IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p841-853.html
   My bibliography  Save this article

Cross‐trait prediction accuracy of summary statistics in genome‐wide association studies

Author

Listed:
  • Bingxin Zhao
  • Fei Zou
  • Hongtu Zhu

Abstract

In the era of big data, univariate models have widely been used as a workhorse tool for quickly producing marginal estimators; and this is true even when in a high‐dimensional dense setting, in which many features are “true,” but weak signals. Genome‐wide association studies (GWAS) epitomize this type of setting. Although the GWAS marginal estimator is popular, it has long been criticized for ignoring the correlation structure of genetic variants (i.e., the linkage disequilibrium [LD] pattern). In this paper, we study the effects of LD pattern on the GWAS marginal estimator and investigate whether or not additionally accounting for the LD can improve the prediction accuracy of complex traits. We consider a general high‐dimensional dense setting for GWAS and study a class of ridge‐type estimators, including the popular marginal estimator and the best linear unbiased prediction (BLUP) estimator as two special cases. We show that the performance of GWAS marginal estimator depends on the LD pattern through the first three moments of its eigenvalue distribution. Furthermore, we uncover that the relative performance of GWAS marginal and BLUP estimators highly depends on the ratio of GWAS sample size over the number of genetic variants. Particularly, our finding reveals that the marginal estimator can easily become near‐optimal within this class when the sample size is relatively small, even though it ignores the LD pattern. On the other hand, BLUP estimator has substantially better performance than the marginal estimator as the sample size increases toward the number of genetic variants, which is typically in millions. Therefore, adjusting for the LD (such as in the BLUP) is most needed when GWAS sample size is large. We illustrate the importance of our results by using the simulated data and real GWAS.

Suggested Citation

  • Bingxin Zhao & Fei Zou & Hongtu Zhu, 2023. "Cross‐trait prediction accuracy of summary statistics in genome‐wide association studies," Biometrics, The International Biometric Society, vol. 79(2), pages 841-853, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:841-853
    DOI: 10.1111/biom.13661
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13661
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    2. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    4. Frank Dudbridge, 2013. "Power and Predictive Accuracy of Polygenic Risk Scores," PLOS Genetics, Public Library of Science, vol. 9(3), pages 1-17, March.
    5. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
    6. Alvaro N. Barbeira & Scott P. Dickinson & Rodrigo Bonazzola & Jiamao Zheng & Heather E. Wheeler & Jason M. Torres & Eric S. Torstenson & Kaanan P. Shah & Tzintzuni Garcia & Todd L. Edwards & Eli A. St, 2018. "Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics," Nature Communications, Nature, vol. 9(1), pages 1-20, December.
    7. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    8. Robert M. Maier & Zhihong Zhu & Sang Hong Lee & Maciej Trzaskowski & Douglas M. Ruderfer & Eli A. Stahl & Stephan Ripke & Naomi R. Wray & Jian Yang & Peter M. Visscher & Matthew R. Robinson, 2018. "Improving genetic prediction by leveraging genetic correlations among human diseases and traits," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    2. Sweata Sen & Damitri Kundu & Kiranmoy Das, 2023. "Variable selection for categorical response: a comparative study," Computational Statistics, Springer, vol. 38(2), pages 809-826, June.
    3. Fan, Jianqing & Ke, Yuan & Wang, Kaizheng, 2020. "Factor-adjusted regularized model selection," Journal of Econometrics, Elsevier, vol. 216(1), pages 71-85.
    4. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
    5. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    6. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    7. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    8. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    9. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    10. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    11. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    12. Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
    13. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    14. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Gerda Claeskens, 2012. "Focused estimation and model averaging with penalization methods: an overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 272-287, August.
    16. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    17. Zeng, Yaohui & Yang, Tianbao & Breheny, Patrick, 2021. "Hybrid safe–strong rules for efficient optimization in lasso-type problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    18. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    19. Hojin Yang & Hongtu Zhu & Joseph G. Ibrahim, 2018. "MILFM: Multiple index latent factor model based on high‐dimensional features," Biometrics, The International Biometric Society, vol. 74(3), pages 834-844, September.
    20. Andrea G Allegrini & Ville Karhunen & Jonathan R I Coleman & Saskia Selzam & Kaili Rimfeld & Sophie von Stumm & Jean-Baptiste Pingault & Robert Plomin, 2020. "Multivariable G-E interplay in the prediction of educational achievement," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-20, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:841-853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.