IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02769-6.html
   My bibliography  Save this article

Improving genetic prediction by leveraging genetic correlations among human diseases and traits

Author

Listed:
  • Robert M. Maier

    (University of Queensland
    Broad Institute
    Massachusetts General Hospital and Harvard Medical School)

  • Zhihong Zhu

    (University of Queensland)

  • Sang Hong Lee

    (University of Queensland
    University of South Australia)

  • Maciej Trzaskowski

    (University of Queensland)

  • Douglas M. Ruderfer

    (Vanderbilt University Medical Center)

  • Eli A. Stahl

    (Icahn School of Medicine at Mount Sinai)

  • Stephan Ripke

    (Broad Institute
    Massachusetts General Hospital and Harvard Medical School
    Charité, Campus Mitte)

  • Naomi R. Wray

    (University of Queensland
    University of Queensland)

  • Jian Yang

    (University of Queensland
    University of Queensland)

  • Peter M. Visscher

    (University of Queensland
    University of Queensland)

  • Matthew R. Robinson

    (University of Queensland
    University of Lausanne
    Swiss Institute of Bioinformatics)

Abstract

Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7% for height to 47% for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait.

Suggested Citation

  • Robert M. Maier & Zhihong Zhu & Sang Hong Lee & Maciej Trzaskowski & Douglas M. Ruderfer & Eli A. Stahl & Stephan Ripke & Naomi R. Wray & Jian Yang & Peter M. Visscher & Matthew R. Robinson, 2018. "Improving genetic prediction by leveraging genetic correlations among human diseases and traits," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02769-6
    DOI: 10.1038/s41467-017-02769-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02769-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02769-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clara Albiñana & Zhihong Zhu & Andrew J. Schork & Andrés Ingason & Hugues Aschard & Isabell Brikell & Cynthia M. Bulik & Liselotte V. Petersen & Esben Agerbo & Jakob Grove & Merete Nordentoft & David , 2023. "Multi-PGS enhances polygenic prediction by combining 937 polygenic scores," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Bingxin Zhao & Fei Zou & Hongtu Zhu, 2023. "Cross‐trait prediction accuracy of summary statistics in genome‐wide association studies," Biometrics, The International Biometric Society, vol. 79(2), pages 841-853, June.
    3. Nuzulul Kurniansyah & Matthew O. Goodman & Tanika N. Kelly & Tali Elfassy & Kerri L. Wiggins & Joshua C. Bis & Xiuqing Guo & Walter Palmas & Kent D. Taylor & Henry J. Lin & Jeffrey Haessler & Yan Gao , 2022. "A multi-ethnic polygenic risk score is associated with hypertension prevalence and progression throughout adulthood," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. George B. Busby & Scott Kulm & Alessandro Bolli & Jen Kintzle & Paolo Di Domenico & Giordano Bottà, 2023. "Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Shuang Song & Wei Jiang & Lin Hou & Hongyu Zhao, 2020. "Leveraging effect size distributions to improve polygenic risk scores derived from summary statistics of genome-wide association studies," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02769-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.