IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36862-w.html
   My bibliography  Save this article

OTTERS: a powerful TWAS framework leveraging summary-level reference data

Author

Listed:
  • Qile Dai

    (Emory University School of Public Health
    Emory University School of Medicine)

  • Geyu Zhou

    (Yale University)

  • Hongyu Zhao

    (Yale University
    Yale School of Public Health)

  • Urmo Võsa

    (University of Tartu)

  • Lude Franke

    (University Medical Center Groningen
    Oncode Institute)

  • Alexis Battle

    (Johns Hopkins University)

  • Alexander Teumer

    (University Medicine Greifswald)

  • Terho Lehtimäki

    (Tampere University)

  • Olli T. Raitakari

    (University of Turku and Turku University Hospital
    University of Turku
    Turku University Hospital)

  • Tõnu Esko

    (University of Tartu)

  • Michael P. Epstein

    (Emory University School of Medicine)

  • Jingjing Yang

    (Emory University School of Medicine)

Abstract

Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable to summary-level reference eQTL datasets. The development of TWAS methods that can harness summary-level reference data is valuable to enable TWAS in broader settings and enhance power due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS (Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and powerful TWAS tool by both simulations and application studies.

Suggested Citation

  • Qile Dai & Geyu Zhou & Hongyu Zhao & Urmo Võsa & Lude Franke & Alexis Battle & Alexander Teumer & Terho Lehtimäki & Olli T. Raitakari & Tõnu Esko & Michael P. Epstein & Jingjing Yang, 2023. "OTTERS: a powerful TWAS framework leveraging summary-level reference data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36862-w
    DOI: 10.1038/s41467-023-36862-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36862-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36862-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin L Keys & Angel C Y Mak & Marquitta J White & Walter L Eckalbar & Andrew W Dahl & Joel Mefford & Anna V Mikhaylova & María G Contreras & Jennifer R Elhawary & Celeste Eng & Donglei Hu & Scott Hun, 2020. "On the cross-population generalizability of gene expression prediction models," PLOS Genetics, Public Library of Science, vol. 16(8), pages 1-28, August.
    2. Qianqian Zhang & Florian Privé & Bjarni Vilhjálmsson & Doug Speed, 2021. "Improved genetic prediction of complex traits from individual-level data or summary statistics," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Lijoi, Antonio & Prunster, Igor & Walker, Stephen G., 2005. "On Consistency of Nonparametric Normal Mixtures for Bayesian Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1292-1296, December.
    5. Arjun Bhattacharya & Yun Li & Michael I Love, 2021. "MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 17(3), pages 1-30, March.
    6. Chen Cao & Bowei Ding & Qing Li & Devin Kwok & Jingjing Wu & Quan Long, 2021. "Power analysis of transcriptome-wide association study: Implications for practical protocol choice," PLOS Genetics, Public Library of Science, vol. 17(2), pages 1-20, February.
    7. Nicholas Mancuso & Simon Gayther & Alexander Gusev & Wei Zheng & Kathryn L. Penney & Zsofia Kote-Jarai & Rosalind Eeles & Matthew Freedman & Christopher Haiman & Bogdan Pasaniuc, 2018. "Large-scale transcriptome-wide association study identifies new prostate cancer risk regions," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    8. Zhongshang Yuan & Huanhuan Zhu & Ping Zeng & Sheng Yang & Shiquan Sun & Can Yang & Jin Liu & Xiang Zhou, 2020. "Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    9. Geyu Zhou & Hongyu Zhao, 2021. "A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-17, July.
    10. Ping Zeng & Xiang Zhou, 2017. "Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    11. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    12. Helian Feng & Nicholas Mancuso & Alexander Gusev & Arunabha Majumdar & Megan Major & Bogdan Pasaniuc & Peter Kraft, 2021. "Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies," PLOS Genetics, Public Library of Science, vol. 17(4), pages 1-21, April.
    13. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lida Wang & Chachrit Khunsriraksakul & Havell Markus & Dieyi Chen & Fan Zhang & Fang Chen & Xiaowei Zhan & Laura Carrel & Dajiang. J. Liu & Bibo Jiang, 2024. "Integrating single cell expression quantitative trait loci summary statistics to understand complex trait risk genes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niloy Biswas & Anirban Bhattacharya & Pierre E. Jacob & James E. Johndrow, 2022. "Coupling‐based convergence assessment of some Gibbs samplers for high‐dimensional Bayesian regression with shrinkage priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 973-996, July.
    2. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Nava Ehsan & Bence M. Kotis & Stephane E. Castel & Eric J. Song & Nicholas Mancuso & Pejman Mohammadi, 2024. "Haplotype-aware modeling of cis-regulatory effects highlights the gaps remaining in eQTL data," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    5. Xiaoguang Xu & Chachrit Khunsriraksakul & James M. Eales & Sebastien Rubin & David Scannali & Sushant Saluja & David Talavera & Havell Markus & Lida Wang & Maciej Drzal & Akhlaq Maan & Abigail C. Lay , 2024. "Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    6. Lida Wang & Chachrit Khunsriraksakul & Havell Markus & Dieyi Chen & Fan Zhang & Fang Chen & Xiaowei Zhan & Laura Carrel & Dajiang. J. Liu & Bibo Jiang, 2024. "Integrating single cell expression quantitative trait loci summary statistics to understand complex trait risk genes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Clara Albiñana & Zhihong Zhu & Andrew J. Schork & Andrés Ingason & Hugues Aschard & Isabell Brikell & Cynthia M. Bulik & Liselotte V. Petersen & Esben Agerbo & Jakob Grove & Merete Nordentoft & David , 2023. "Multi-PGS enhances polygenic prediction by combining 937 polygenic scores," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Bingxin Zhao & Fei Zou & Hongtu Zhu, 2023. "Cross‐trait prediction accuracy of summary statistics in genome‐wide association studies," Biometrics, The International Biometric Society, vol. 79(2), pages 841-853, June.
    9. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    10. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    11. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    12. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    13. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    14. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    15. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    16. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    17. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    18. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    19. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    20. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36862-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.