IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40175-3.html
   My bibliography  Save this article

In situ assembly of bioresorbable organic bioelectronics in the brain

Author

Listed:
  • Martin Hjort

    (Lund University)

  • Abdelrazek H. Mousa

    (University of Gothenburg)

  • David Bliman

    (University of Gothenburg)

  • Muhammad Anwar Shameem

    (University of Gothenburg)

  • Karin Hellman

    (Lund University)

  • Amit Singh Yadav

    (Lund University)

  • Peter Ekström

    (Lund University)

  • Fredrik Ek

    (Lund University)

  • Roger Olsson

    (Lund University
    University of Gothenburg)

Abstract

Bioelectronics can potentially complement classical therapies in nonchronic treatments, such as immunotherapy and cancer. In addition to functionality, minimally invasive implantation methods and bioresorbable materials are central to nonchronic treatments. The latter avoids the need for surgical removal after disease relief. Self-organizing substrate-free organic electrodes meet these criteria and integrate seamlessly into dynamic biological systems in ways difficult for classical rigid solid-state electronics. Here we place bioresorbable electrodes with a brain-matched shear modulus—made from water-dispersed nanoparticles in the brain—in the targeted area using a capillary thinner than a human hair. Thereafter, we show that an optional auxiliary module grows dendrites from the installed conductive structure to seamlessly embed neurons and modify the electrode’s volume properties. We demonstrate that these soft electrodes set off a controlled cellular response in the brain when relaying external stimuli and that the biocompatible materials show no tissue damage after bioresorption. These findings encourage further investigation of temporary organic bioelectronics for nonchronic treatments assembled in vivo.

Suggested Citation

  • Martin Hjort & Abdelrazek H. Mousa & David Bliman & Muhammad Anwar Shameem & Karin Hellman & Amit Singh Yadav & Peter Ekström & Fredrik Ek & Roger Olsson, 2023. "In situ assembly of bioresorbable organic bioelectronics in the brain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40175-3
    DOI: 10.1038/s41467-023-40175-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40175-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40175-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seung-Kyun Kang & Rory K. J. Murphy & Suk-Won Hwang & Seung Min Lee & Daniel V. Harburg & Neil A. Krueger & Jiho Shin & Paul Gamble & Huanyu Cheng & Sooyoun Yu & Zhuangjian Liu & Jordan G. McCall & Ma, 2016. "Bioresorbable silicon electronic sensors for the brain," Nature, Nature, vol. 530(7588), pages 71-76, February.
    2. Jinxing Li & Yuxin Liu & Lei Yuan & Baibing Zhang & Estelle Spear Bishop & Kecheng Wang & Jing Tang & Yu-Qing Zheng & Wenhui Xu & Simiao Niu & Levent Beker & Thomas L. Li & Gan Chen & Modupeola Diyaol, 2022. "A tissue-like neurotransmitter sensor for the brain and gut," Nature, Nature, vol. 606(7912), pages 94-101, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umut Aydemir & Abdelrazek H. Mousa & Cedric Dicko & Xenofon Strakosas & Muhammad Anwar Shameem & Karin Hellman & Amit Singh Yadav & Peter Ekström & Damien Hughes & Fredrik Ek & Magnus Berggren & Ander, 2024. "In situ assembly of an injectable cardiac stimulator," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Li & Zhidong Wei & Fei Jin & Yongjiu Yuan & Weiying Zheng & Lili Qian & Hongbo Wang & Lisha Hua & Juan Ma & Huanhuan Zhang & Huaduo Gu & Michael G. Irwin & Ting Wang & Steven Wang & Zuankai Wang , 2023. "Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Matthew S. Brown & Louis Somma & Melissa Mendoza & Yeonsik Noh & Gretchen J. Mahler & Ahyeon Koh, 2022. "Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Samantha M. McDonald & Quansan Yang & Yen-Hao Hsu & Shantanu P. Nikam & Ziying Hu & Zilu Wang & Darya Asheghali & Tiffany Yen & Andrey V. Dobrynin & John A. Rogers & Matthew L. Becker, 2023. "Resorbable barrier polymers for flexible bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Zhouheng Wang & Nanlin Shi & Yingchao Zhang & Ning Zheng & Haicheng Li & Yang Jiao & Jiahui Cheng & Yutong Wang & Xiaoqing Zhang & Ying Chen & Yihao Chen & Heling Wang & Tao Xie & Yijun Wang & Yinji M, 2023. "Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Xianchi Zhou & Zhouyu Lu & Wenzhong Cao & Zihao Zhu & Yifeng Chen & Yanwen Ni & Zuolong Liu & Fan Jia & Yang Ye & Haijie Han & Ke Yao & Weifeng Liu & Youxiang Wang & Jian Ji & Peng Zhang, 2024. "Immunocompatible elastomer with increased resistance to the foreign body response," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Jie Cao & Xusheng Liu & Jie Qiu & Zhifei Yue & Yang Li & Qian Xu & Yan Chen & Jiewen Chen & Hongfei Cheng & Guozhong Xing & Enming Song & Ming Wang & Qi Liu & Ming Liu, 2024. "Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Anthony E. Hughes & Nawshad Haque & Stephen A. Northey & Sarbjit Giddey, 2021. "Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts," Resources, MDPI, vol. 10(9), pages 1-40, September.
    9. Sizhe Huang & Xinyue Liu & Shaoting Lin & Christopher Glynn & Kayla Felix & Atharva Sahasrabudhe & Collin Maley & Jingyi Xu & Weixuan Chen & Eunji Hong & Alfred J. Crosby & Qianbin Wang & Siyuan Rao, 2024. "Control of polymers’ amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Xinjian Xie & Zhonggang Xu & Xin Yu & Hong Jiang & Hongjiao Li & Wenqian Feng, 2023. "Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Luis Hernández-Álvarez & Juan José Bullón Pérez & Farrah Kristel Batista & Araceli Queiruga-Dios, 2022. "Security Threats and Cryptographic Protocols for Medical Wearables," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
    12. Quansan Yang & Ziying Hu & Min-Ho Seo & Yameng Xu & Ying Yan & Yen-Hao Hsu & Jaime Berkovich & Kwonjae Lee & Tzu-Li Liu & Samantha McDonald & Haolin Nie & Hannah Oh & Mingzheng Wu & Jin-Tae Kim & Step, 2022. "High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Jung Min Lee & Young-Woo Pyo & Yeon Jun Kim & Jin Hee Hong & Yonghyeon Jo & Wonshik Choi & Dingchang Lin & Hong-Gyu Park, 2023. "The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Kewang Nan & Kiwan Wong & Dengfeng Li & Binbin Ying & James C. McRae & Vivian R. Feig & Shubing Wang & Ningjie Du & Yuelong Liang & Qijiang Mao & Enjie Zhou & Yonglin Chen & Lei Sang & Kuanming Yao & , 2024. "An ingestible, battery-free, tissue-adhering robotic interface for non-invasive and chronic electrostimulation of the gut," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Leiwen Mao & Yujie Han & Qi-Wei Zhang & Yang Tian, 2023. "Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Myeongki Cho & Jeong-Kyu Han & Jungmin Suh & Jeong Jin Kim & Jae Ryun Ryu & In Sik Min & Mingyu Sang & Selin Lim & Tae Soo Kim & Kyubeen Kim & Kyowon Kang & Kyuhyun Hwang & Kanghwan Kim & Eun-Bin Hong, 2024. "Fully bioresorbable hybrid opto-electronic neural implant system for simultaneous electrophysiological recording and optogenetic stimulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Young-Geun Park & Yong Won Kwon & Chin Su Koh & Enji Kim & Dong Ha Lee & Sumin Kim & Jongmin Mun & Yeon-Mi Hong & Sanghoon Lee & Ju-Young Kim & Jae-Hyun Lee & Hyun Ho Jung & Jinwoo Cheon & Jin Woo Cha, 2024. "In-vivo integration of soft neural probes through high-resolution printing of liquid electronics on the cranium," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40175-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.