IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i6p886-d768484.html
   My bibliography  Save this article

Security Threats and Cryptographic Protocols for Medical Wearables

Author

Listed:
  • Luis Hernández-Álvarez

    (Institute of Physical and Information Technologies (ITEFI), Spanish National Research Council (CSIC), 28006 Madrid, Spain
    Computer Security Lab (COSEC), Universidad Carlos III de Madrid, 28911 Madrid, Spain
    These authors contributed equally to this work.)

  • Juan José Bullón Pérez

    (Higher Technical School of Industrial Engineering, Universidad de Salamanca, 37700 Salamanca, Spain
    These authors contributed equally to this work.)

  • Farrah Kristel Batista

    (Institute of Fundamental Physics and Mathematics, Universidad de Salamanca, 37008 Salamanca, Spain
    These authors contributed equally to this work.)

  • Araceli Queiruga-Dios

    (Higher Technical School of Industrial Engineering, Universidad de Salamanca, 37700 Salamanca, Spain
    Institute of Fundamental Physics and Mathematics, Universidad de Salamanca, 37008 Salamanca, Spain
    These authors contributed equally to this work.)

Abstract

In the past few years, the use of several medical devices is increasing. This paper will pay attention to a device developed to get measures of the temperature of diabetic foot. These wearables usually do not have cryptographic protocols to guarantee data security. This study analyzes the existing security in these devices, and simulate malware propagation taking into account the vulnerabilities and lack of security in these highly-constrained interconnected devices. A simulation of malware spreading in a network made by 10 and 15 individuals with 6 and 34 sensors each one, respectively, is included in this study. To avoid such attacks, a lightweight cryptographic protocol could be a satisfactory solution. Considering the quick development of quantum computers, several current cryptographic protocols have been compromised.

Suggested Citation

  • Luis Hernández-Álvarez & Juan José Bullón Pérez & Farrah Kristel Batista & Araceli Queiruga-Dios, 2022. "Security Threats and Cryptographic Protocols for Medical Wearables," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:886-:d:768484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/6/886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/6/886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seung-Kyun Kang & Rory K. J. Murphy & Suk-Won Hwang & Seung Min Lee & Daniel V. Harburg & Neil A. Krueger & Jiho Shin & Paul Gamble & Huanyu Cheng & Sooyoun Yu & Zhuangjian Liu & Jordan G. McCall & Ma, 2016. "Bioresorbable silicon electronic sensors for the brain," Nature, Nature, vol. 530(7588), pages 71-76, February.
    2. Farrah Kristel Batista & Angel Martín del Rey & Araceli Queiruga-Dios, 2020. "A New Individual-Based Model to Simulate Malware Propagation in Wireless Sensor Networks," Mathematics, MDPI, vol. 8(3), pages 1-23, March.
    3. Mills, Adam J. & Watson, Richard T. & Pitt, Leyland & Kietzmann, Jan, 2016. "Wearing safe: Physical and informational security in the age of the wearable device," Business Horizons, Elsevier, vol. 59(6), pages 615-622.
    4. Ioan Stefan Sacala & Mihnea Alexandru Moisescu, 2014. "The Development of Enterprise Systems based on Cyber- Physical Systems Principles," Romanian Statistical Review, Romanian Statistical Review, vol. 62(4), pages 29-39, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avinash Vijayarangan & Veena Narayanan & Vijayarangan Natarajan & Srikanth Raghavendran, 2022. "Novel Authentication Protocols Based on Quadratic Diophantine Equations," Mathematics, MDPI, vol. 10(17), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew S. Brown & Louis Somma & Melissa Mendoza & Yeonsik Noh & Gretchen J. Mahler & Ahyeon Koh, 2022. "Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Siyao Qin & Peng Yang & Zhaoqi Liu & Jun Hu & Ning Li & Liming Ding & Xiangyu Chen, 2024. "Triboelectric sensor with ultra-wide linear range based on water-containing elastomer and ion-rich interface," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Samantha M. McDonald & Quansan Yang & Yen-Hao Hsu & Shantanu P. Nikam & Ziying Hu & Zilu Wang & Darya Asheghali & Tiffany Yen & Andrey V. Dobrynin & John A. Rogers & Matthew L. Becker, 2023. "Resorbable barrier polymers for flexible bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Martin Hjort & Abdelrazek H. Mousa & David Bliman & Muhammad Anwar Shameem & Karin Hellman & Amit Singh Yadav & Peter Ekström & Fredrik Ek & Roger Olsson, 2023. "In situ assembly of bioresorbable organic bioelectronics in the brain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Lord Ferguson, Sarah & Smith, Claudia & Kietzmann, Jan, 2022. "Hands-off? Lessons from high-touch professionals about going virtual," Business Horizons, Elsevier, vol. 65(3), pages 303-313.
    7. Guiyun Liu & Jieyong Chen & Zhongwei Liang & Zhimin Peng & Junqiang Li, 2021. "Dynamical Analysis and Optimal Control for a SEIR Model Based on Virus Mutation in WSNs," Mathematics, MDPI, vol. 9(9), pages 1-16, April.
    8. Avinash Vijayarangan & Veena Narayanan & Vijayarangan Natarajan & Srikanth Raghavendran, 2022. "Novel Authentication Protocols Based on Quadratic Diophantine Equations," Mathematics, MDPI, vol. 10(17), pages 1-10, September.
    9. Guiyun Liu & Junqiang Li & Zhongwei Liang & Zhimin Peng, 2021. "Dynamical Behavior Analysis of a Time-Delay SIRS-L Model in Rechargeable Wireless Sensor Networks," Mathematics, MDPI, vol. 9(16), pages 1-21, August.
    10. Jie Cao & Xusheng Liu & Jie Qiu & Zhifei Yue & Yang Li & Qian Xu & Yan Chen & Jiewen Chen & Hongfei Cheng & Guozhong Xing & Enming Song & Ming Wang & Qi Liu & Ming Liu, 2024. "Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Anthony E. Hughes & Nawshad Haque & Stephen A. Northey & Sarbjit Giddey, 2021. "Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts," Resources, MDPI, vol. 10(9), pages 1-40, September.
    12. Lee, In, 2021. "Cybersecurity: Risk management framework and investment cost analysis," Business Horizons, Elsevier, vol. 64(5), pages 659-671.
    13. Myeongki Cho & Jeong-Kyu Han & Jungmin Suh & Jeong Jin Kim & Jae Ryun Ryu & In Sik Min & Mingyu Sang & Selin Lim & Tae Soo Kim & Kyubeen Kim & Kyowon Kang & Kyuhyun Hwang & Kanghwan Kim & Eun-Bin Hong, 2024. "Fully bioresorbable hybrid opto-electronic neural implant system for simultaneous electrophysiological recording and optogenetic stimulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Maltseva, Kateryna, 2020. "Wearables in the workplace: The brave new world of employee engagement," Business Horizons, Elsevier, vol. 63(4), pages 493-505.
    15. Lina Shenderivska & Olga Guk, 2018. "Enterprises Development: Management Model," Baltic Journal of Economic Studies, Publishing house "Baltija Publishing", vol. 4(1).
    16. Quansan Yang & Ziying Hu & Min-Ho Seo & Yameng Xu & Ying Yan & Yen-Hao Hsu & Jaime Berkovich & Kwonjae Lee & Tzu-Li Liu & Samantha McDonald & Haolin Nie & Hannah Oh & Mingzheng Wu & Jin-Tae Kim & Step, 2022. "High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:886-:d:768484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.