IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52023-z.html
   My bibliography  Save this article

Immunocompatible elastomer with increased resistance to the foreign body response

Author

Listed:
  • Xianchi Zhou

    (Zhejiang University School of Medicine
    Zhejiang University)

  • Zhouyu Lu

    (Zhejiang University)

  • Wenzhong Cao

    (Zhejiang University)

  • Zihao Zhu

    (Zhejiang University)

  • Yifeng Chen

    (Zhejiang University)

  • Yanwen Ni

    (Zhejiang University)

  • Zuolong Liu

    (Zhejiang University School of Medicine
    Zhejiang University)

  • Fan Jia

    (Zhejiang University)

  • Yang Ye

    (Zhejiang University)

  • Haijie Han

    (Zhejiang University)

  • Ke Yao

    (Zhejiang University)

  • Weifeng Liu

    (Zhejiang University)

  • Youxiang Wang

    (Zhejiang University)

  • Jian Ji

    (Zhejiang University School of Medicine
    Zhejiang University)

  • Peng Zhang

    (Zhejiang University School of Medicine
    Zhejiang University)

Abstract

Polymeric elastomers are extensively employed to fabricate implantable medical devices. However, implantation of the elastomers can induce a strong immune rejection known as the foreign body response (FBR), diminishing their efficacy. Herein, we present a group of immunocompatible elastomers, termed easy-to-synthesize vinyl-based anti-FBR dense elastomers (EVADE). EVADE materials effectively suppress the inflammation and capsule formation in subcutaneous models of rodents and non-human primates for at least one year and two months, respectively. Implantation of EVADE materials significantly reduces the expression of inflammation-related proteins S100A8/A9 in adjacent tissues compared to polydimethylsiloxane. We also show that inhibition or knockout of S100A8/A9 leads to substantial attenuation of fibrosis in mice, suggesting a target for fibrosis inhibition. Continuous subcutaneous insulin infusion (CSII) catheters constructed from EVADE elastomers demonstrate significantly improved longevity and performance compared to commercial catheters. The EVADE materials reported here may enhance and extend function in various medical devices by resisting the local immune responses.

Suggested Citation

  • Xianchi Zhou & Zhouyu Lu & Wenzhong Cao & Zihao Zhu & Yifeng Chen & Yanwen Ni & Zuolong Liu & Fan Jia & Yang Ye & Haijie Han & Ke Yao & Weifeng Liu & Youxiang Wang & Jian Ji & Peng Zhang, 2024. "Immunocompatible elastomer with increased resistance to the foreign body response," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52023-z
    DOI: 10.1038/s41467-024-52023-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52023-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52023-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donghui Zhang & Qi Chen & Yufang Bi & Haodong Zhang & Minzhang Chen & Jianglin Wan & Chao Shi & Wenjing Zhang & Junyu Zhang & Zhongqian Qiao & Jin Li & Shengfu Chen & Runhui Liu, 2021. "Bio-inspired poly-DL-serine materials resist the foreign-body response," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Jinxing Li & Yuxin Liu & Lei Yuan & Baibing Zhang & Estelle Spear Bishop & Kecheng Wang & Jing Tang & Yu-Qing Zheng & Wenhui Xu & Simiao Niu & Levent Beker & Thomas L. Li & Gan Chen & Modupeola Diyaol, 2022. "A tissue-like neurotransmitter sensor for the brain and gut," Nature, Nature, vol. 606(7912), pages 94-101, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Li & Zhidong Wei & Fei Jin & Yongjiu Yuan & Weiying Zheng & Lili Qian & Hongbo Wang & Lisha Hua & Juan Ma & Huanhuan Zhang & Huaduo Gu & Michael G. Irwin & Ting Wang & Steven Wang & Zuankai Wang , 2023. "Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. William Whyte & Debkalpa Goswami & Sophie X. Wang & Yiling Fan & Niamh A. Ward & Ruth E. Levey & Rachel Beatty & Scott T. Robinson & Declan Sheppard & Raymond O’Connor & David S. Monahan & Lesley Tras, 2022. "Dynamic actuation enhances transport and extends therapeutic lifespan in an implantable drug delivery platform," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Martin Hjort & Abdelrazek H. Mousa & David Bliman & Muhammad Anwar Shameem & Karin Hellman & Amit Singh Yadav & Peter Ekström & Fredrik Ek & Roger Olsson, 2023. "In situ assembly of bioresorbable organic bioelectronics in the brain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Zhouheng Wang & Nanlin Shi & Yingchao Zhang & Ning Zheng & Haicheng Li & Yang Jiao & Jiahui Cheng & Yutong Wang & Xiaoqing Zhang & Ying Chen & Yihao Chen & Heling Wang & Tao Xie & Yijun Wang & Yinji M, 2023. "Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Jung Min Lee & Young-Woo Pyo & Yeon Jun Kim & Jin Hee Hong & Yonghyeon Jo & Wonshik Choi & Dingchang Lin & Hong-Gyu Park, 2023. "The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Kewang Nan & Kiwan Wong & Dengfeng Li & Binbin Ying & James C. McRae & Vivian R. Feig & Shubing Wang & Ningjie Du & Yuelong Liang & Qijiang Mao & Enjie Zhou & Yonglin Chen & Lei Sang & Kuanming Yao & , 2024. "An ingestible, battery-free, tissue-adhering robotic interface for non-invasive and chronic electrostimulation of the gut," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Leiwen Mao & Yujie Han & Qi-Wei Zhang & Yang Tian, 2023. "Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Sizhe Huang & Xinyue Liu & Shaoting Lin & Christopher Glynn & Kayla Felix & Atharva Sahasrabudhe & Collin Maley & Jingyi Xu & Weixuan Chen & Eunji Hong & Alfred J. Crosby & Qianbin Wang & Siyuan Rao, 2024. "Control of polymers’ amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Xinjian Xie & Zhonggang Xu & Xin Yu & Hong Jiang & Hongjiao Li & Wenqian Feng, 2023. "Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Young-Geun Park & Yong Won Kwon & Chin Su Koh & Enji Kim & Dong Ha Lee & Sumin Kim & Jongmin Mun & Yeon-Mi Hong & Sanghoon Lee & Ju-Young Kim & Jae-Hyun Lee & Hyun Ho Jung & Jinwoo Cheon & Jin Woo Cha, 2024. "In-vivo integration of soft neural probes through high-resolution printing of liquid electronics on the cranium," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Donghui Zhang & Jingjing Liu & Qi Chen & Weinan Jiang & Yibing Wang & Jiayang Xie & Kaiqian Ma & Chao Shi & Haodong Zhang & Minzhang Chen & Jianglin Wan & Pengcheng Ma & Jingcheng Zou & Wenjing Zhang , 2021. "A sandcastle worm-inspired strategy to functionalize wet hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52023-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.