IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47988-w.html
   My bibliography  Save this article

Control of polymers’ amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics

Author

Listed:
  • Sizhe Huang

    (State University of New York
    University of Massachusetts)

  • Xinyue Liu

    (Michigan State University)

  • Shaoting Lin

    (Michigan State University)

  • Christopher Glynn

    (University of Massachusetts)

  • Kayla Felix

    (University of Massachusetts)

  • Atharva Sahasrabudhe

    (Massachusetts Institute of Technology)

  • Collin Maley

    (University of Massachusetts)

  • Jingyi Xu

    (University of Massachusetts)

  • Weixuan Chen

    (University of Massachusetts)

  • Eunji Hong

    (State University of New York
    University of Massachusetts)

  • Alfred J. Crosby

    (University of Massachusetts)

  • Qianbin Wang

    (State University of New York
    University of Massachusetts)

  • Siyuan Rao

    (State University of New York
    University of Massachusetts)

Abstract

Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers’ amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.

Suggested Citation

  • Sizhe Huang & Xinyue Liu & Shaoting Lin & Christopher Glynn & Kayla Felix & Atharva Sahasrabudhe & Collin Maley & Jingyi Xu & Weixuan Chen & Eunji Hong & Alfred J. Crosby & Qianbin Wang & Siyuan Rao, 2024. "Control of polymers’ amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47988-w
    DOI: 10.1038/s41467-024-47988-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47988-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47988-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seongjun Park & Hyunwoo Yuk & Ruike Zhao & Yeong Shin Yim & Eyob W. Woldeghebriel & Jeewoo Kang & Andres Canales & Yoel Fink & Gloria B. Choi & Xuanhe Zhao & Polina Anikeeva, 2021. "Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Max A. Saccone & Rebecca A. Gallivan & Kai Narita & Daryl W. Yee & Julia R. Greer, 2022. "Additive manufacturing of micro-architected metals via hydrogel infusion," Nature, Nature, vol. 612(7941), pages 685-690, December.
    3. Yousang Yoon & Hyogeun Shin & Donghak Byun & Jiwan Woo & Yakdol Cho & Nakwon Choi & Il-Joo Cho, 2022. "Neural probe system for behavioral neuropharmacology by bi-directional wireless drug delivery and electrophysiology in socially interacting mice," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Jinxing Li & Yuxin Liu & Lei Yuan & Baibing Zhang & Estelle Spear Bishop & Kecheng Wang & Jing Tang & Yu-Qing Zheng & Wenhui Xu & Simiao Niu & Levent Beker & Thomas L. Li & Gan Chen & Modupeola Diyaol, 2022. "A tissue-like neurotransmitter sensor for the brain and gut," Nature, Nature, vol. 606(7912), pages 94-101, June.
    5. Hyesung Cho & Sang Moon Kim & Yun Sik Kang & Junsoo Kim & Segeun Jang & Minhyoung Kim & Hyunchul Park & Jung Won Bang & Soonmin Seo & Kahp-Yang Suh & Yung-Eun Sung & Mansoo Choi, 2015. "Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung Min Lee & Young-Woo Pyo & Yeon Jun Kim & Jin Hee Hong & Yonghyeon Jo & Wonshik Choi & Dingchang Lin & Hong-Gyu Park, 2023. "The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Young-Geun Park & Yong Won Kwon & Chin Su Koh & Enji Kim & Dong Ha Lee & Sumin Kim & Jongmin Mun & Yeon-Mi Hong & Sanghoon Lee & Ju-Young Kim & Jae-Hyun Lee & Hyun Ho Jung & Jinwoo Cheon & Jin Woo Cha, 2024. "In-vivo integration of soft neural probes through high-resolution printing of liquid electronics on the cranium," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Tong Li & Zhidong Wei & Fei Jin & Yongjiu Yuan & Weiying Zheng & Lili Qian & Hongbo Wang & Lisha Hua & Juan Ma & Huanhuan Zhang & Huaduo Gu & Michael G. Irwin & Ting Wang & Steven Wang & Zuankai Wang , 2023. "Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Martin Hjort & Abdelrazek H. Mousa & David Bliman & Muhammad Anwar Shameem & Karin Hellman & Amit Singh Yadav & Peter Ekström & Fredrik Ek & Roger Olsson, 2023. "In situ assembly of bioresorbable organic bioelectronics in the brain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Zhouheng Wang & Nanlin Shi & Yingchao Zhang & Ning Zheng & Haicheng Li & Yang Jiao & Jiahui Cheng & Yutong Wang & Xiaoqing Zhang & Ying Chen & Yihao Chen & Heling Wang & Tao Xie & Yijun Wang & Yinji M, 2023. "Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Xinchen Ni & Haiwen Luan & Jin-Tae Kim & Sam I. Rogge & Yun Bai & Jean Won Kwak & Shangliangzi Liu & Da Som Yang & Shuo Li & Shupeng Li & Zhengwei Li & Yamin Zhang & Changsheng Wu & Xiaoyue Ni & Yongg, 2022. "Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Jongwoon Kim & Hengji Huang & Earl T. Gilbert & Kaiser C. Arndt & Daniel Fine English & Xiaoting Jia, 2024. "T-DOpE probes reveal sensitivity of hippocampal oscillations to cannabinoids in behaving mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Xinjian Xie & Zhonggang Xu & Xin Yu & Hong Jiang & Hongjiao Li & Wenqian Feng, 2023. "Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Bingyan Liu & Shirong Liu & Vasanthan Devaraj & Yuxiang Yin & Yueqi Zhang & Jingui Ai & Yaochen Han & Jicheng Feng, 2023. "Metal 3D nanoprinting with coupled fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Leiwen Mao & Yujie Han & Qi-Wei Zhang & Yang Tian, 2023. "Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Myeongki Cho & Jeong-Kyu Han & Jungmin Suh & Jeong Jin Kim & Jae Ryun Ryu & In Sik Min & Mingyu Sang & Selin Lim & Tae Soo Kim & Kyubeen Kim & Kyowon Kang & Kyuhyun Hwang & Kanghwan Kim & Eun-Bin Hong, 2024. "Fully bioresorbable hybrid opto-electronic neural implant system for simultaneous electrophysiological recording and optogenetic stimulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47988-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.