IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31274-8.html
   My bibliography  Save this article

A spin-crossover framework endowed with pore-adjustable behavior by slow structural dynamics

Author

Listed:
  • Jin-Peng Xue

    (Beijing Institute of Technology)

  • Yang Hu

    (Beijing Institute of Technology)

  • Bo Zhao

    (Beijing Institute of Technology)

  • Zhi-Kun Liu

    (Beijing Institute of Technology)

  • Jing Xie

    (Beijing Institute of Technology)

  • Zi-Shuo Yao

    (Beijing Institute of Technology)

  • Jun Tao

    (Beijing Institute of Technology)

Abstract

Host-guest interactions play critical roles in achieving switchable structures and functionalities in porous materials, but design and control remain challenging. Here, we report a two-dimensional porous magnetic compound, [FeII(prentrz)2PdII(CN)4] (prentrz = (1E,2E)−3-phenyl-N-(4H-1,2,4-triazol-4-yl)prop-2-en-1-imine), which exhibits an atypical pore transformation that directly entangles with a spin state transition in response to water adsorption. In this material, the adsorption-induced, non-uniform pedal motion of the axial prentrz ligands and the crumpling/unfolding of the layer structure actuate a reversible narrow quasi-discrete pore (nqp) to large channel-type pore (lcp) change that leads to a pore rearrangement associated with simultaneous pore opening and closing. The unusual pore transformation results in programmable adsorption in which the lcp structure type must be achieved first by the long-time exposure of the nqp structure type in a steam-saturated atmosphere to accomplish the gate-opening adsorption. The structural transformation is accompanied by a variation in the spin-crossover (SCO) property of FeII, i.e., two-step SCO with a large plateau for the lcp phase and two-step SCO with no plateau for the nqp phase. The unusual adsorption-induced pore rearrangement and the related SCO property offer a way to design and control the pore structure and physical properties of dynamic frameworks.

Suggested Citation

  • Jin-Peng Xue & Yang Hu & Bo Zhao & Zhi-Kun Liu & Jing Xie & Zi-Shuo Yao & Jun Tao, 2022. "A spin-crossover framework endowed with pore-adjustable behavior by slow structural dynamics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31274-8
    DOI: 10.1038/s41467-022-31274-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31274-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31274-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandros P. Katsoulidis & Dmytro Antypov & George F. S. Whitehead & Elliot J. Carrington & Dave J. Adams & Neil G. Berry & George R. Darling & Matthew S. Dyer & Matthew J. Rosseinsky, 2019. "Chemical control of structure and guest uptake by a conformationally mobile porous material," Nature, Nature, vol. 565(7738), pages 213-217, January.
    2. Simon Krause & Volodymyr Bon & Irena Senkovska & Ulrich Stoeck & Dirk Wallacher & Daniel M. Többens & Stefan Zander & Renjith S. Pillai & Guillaume Maurin & François-Xavier Coudert & Stefan Kaskel, 2016. "A pressure-amplifying framework material with negative gas adsorption transitions," Nature, Nature, vol. 532(7599), pages 348-352, April.
    3. Sven M. J. Rogge & Michel Waroquier & Veronique Van Speybroeck, 2019. "Unraveling the thermodynamic criteria for size-dependent spontaneous phase separation in soft porous crystals," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Douglas A. Reed & Benjamin K. Keitz & Julia Oktawiec & Jarad A. Mason & Tomče Runčevski & Dianne J. Xiao & Lucy E. Darago & Valentina Crocellà & Silvia Bordiga & Jeffrey R. Long, 2017. "A spin transition mechanism for cooperative adsorption in metal–organic frameworks," Nature, Nature, vol. 550(7674), pages 96-100, October.
    5. Simon Krause & Jack D. Evans & Volodymyr Bon & Irena Senkovska & Paul Iacomi & Felicitas Kolbe & Sebastian Ehrling & Erik Troschke & Jürgen Getzschmann & Daniel M. Többens & Alexandra Franz & Dirk Wal, 2019. "Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangyang Xu & Tu Sun & Tengwu Zeng & Xiangyu Zhang & Xuan Yao & Shan Liu & Zhaolin Shi & Wen Wen & Yingbo Zhao & Shan Jiang & Yanhang Ma & Yue-Biao Zhang, 2023. "Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Lei Wei & Tu Sun & Zhaolin Shi & Zezhao Xu & Wen Wen & Shan Jiang & Yingbo Zhao & Yanhang Ma & Yue-Biao Zhang, 2022. "Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Simon Krause & Jack D. Evans & Volodymyr Bon & Stefano Crespi & Wojciech Danowski & Wesley R. Browne & Sebastian Ehrling & Francesco Walenszus & Dirk Wallacher & Nico Grimm & Daniel M. Többens & Manfr, 2022. "Cooperative light-induced breathing of soft porous crystals via azobenzene buckling," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Francesco Walenszus & Volodymyr Bon & Jack D. Evans & Simon Krause & Jürgen Getzschmann & Stefan Kaskel & Muslim Dvoyashkin, 2023. "On the role of history-dependent adsorbate distribution and metastable states in switchable mesoporous metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Yun Li & Bo Zhao & Jin-Peng Xue & Jing Xie & Zi-Shuo Yao & Jun Tao, 2021. "Giant single-crystal-to-single-crystal transformations associated with chiral interconversion induced by elimination of chelating ligands," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Yifan Gu & Jia-Jia Zheng & Ken-ichi Otake & Shigeyoshi Sakaki & Hirotaka Ashitani & Yoshiki Kubota & Shogo Kawaguchi & Ming-Shui Yao & Ping Wang & Ying Wang & Fengting Li & Susumu Kitagawa, 2023. "Soft corrugated channel with synergistic exclusive discrimination gating for CO2 recognition in gas mixture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Qingju Wang & Jianbo Hu & Lifeng Yang & Zhaoqiang Zhang & Tian Ke & Xili Cui & Huabin Xing, 2022. "One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Jabadurai Jayapaul & Sanna Komulainen & Vladimir V. Zhivonitko & Jiří Mareš & Chandan Giri & Kari Rissanen & Perttu Lantto & Ville-Veikko Telkki & Leif Schröder, 2022. "Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Davide Caprini & Francesco Battista & Paweł Zajdel & Giovanni Di Muccio & Carlo Guardiani & Benjamin Trump & Marcus Carter & Andrey A. Yakovenko & Eder Amayuelas & Luis Bartolomé & Simone Meloni & Yar, 2024. "Bubbles enable volumetric negative compressibility in metastable elastocapillary systems," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Yu Liang & Xiaoxin Yang & Xiaoyu Wang & Zong-Jie Guan & Hang Xing & Yu Fang, 2023. "A cage-on-MOF strategy to coordinatively functionalize mesoporous MOFs for manipulating selectivity in adsorption and catalysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Xiaojun Ding & Jing Chen & Gang Ye, 2024. "Supramolecular polynuclear clusters sustained cubic hydrogen bonded frameworks with octahedral cages for reversible photochromism," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Ryunosuke Hayashi & Shohei Tashiro & Masahiro Asakura & Shinya Mitsui & Mitsuhiko Shionoya, 2023. "Effector-dependent structural transformation of a crystalline framework with allosteric effects on molecular recognition ability," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Yan Su & Ken-ichi Otake & Jia-Jia Zheng & Ping Wang & Qing Lin & Susumu Kitagawa & Cheng Gu, 2024. "Diffusion-rate sieving of propylene and propane mixtures in a cooperatively dynamic porous crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Yong Peng & Hanting Xiong & Peixin Zhang & Zhiwei Zhao & Xing Liu & Shihui Tang & Yuan Liu & Zhenliang Zhu & Weizhen Zhou & Zhenning Deng & Junhui Liu & Yao Zhong & Zeliang Wu & Jingwen Chen & Zhenyu , 2024. "Interaction-selective molecular sieving adsorbent for direct separation of ethylene from senary C2-C4 olefin/paraffin mixture," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Rong Yang & Yu Wang & Jian-Wei Cao & Zi-Ming Ye & Tony Pham & Katherine A. Forrest & Rajamani Krishna & Hongwei Chen & Libo Li & Bo-Kai Ling & Tao Zhang & Tong Gao & Xue Jiang & Xiang-Ou Xu & Qian-Hao, 2024. "Hydrogen bond unlocking-driven pore structure control for shifting multi-component gas separation function," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31274-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.