IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40032-3.html
   My bibliography  Save this article

Enabling programmable dynamic DNA chemistry using small-molecule DNA binders

Author

Listed:
  • Junpeng Xu

    (Sichuan University
    Brock University)

  • Guan Alex Wang

    (Sichuan University)

  • Lu Gao

    (Sichuan University)

  • Lang Wu

    (Sichuan University)

  • Qian Lei

    (Sichuan University)

  • Hui Deng

    (Sichuan University)

  • Feng Li

    (Sichuan University
    Brock University
    Sichuan University)

Abstract

The binding of small molecules to the double helical structure of DNA, through either intercalation or minor groove binding, may significantly alter the stability and functionality of DNA, which is a fundamental basis for many therapeutic and sensing applications. Here, we report that small-molecule DNA binders can also be used to program reaction pathways of a dynamic DNA reaction, where DNA strand displacement can be tuned quantitatively according to the affinity, charge, and concentrations of a given DNA binder. The binder-induced nucleic acid strand displacement (BIND) thus enables innovative technologies to accelerate the discovery and characterization of bioactive small molecules. Specifically, we demonstrate the comprehensive characterization of existing and newly discovered DNA binders, where critical parameters for binding affinity and sequence selectivity can be obtained in a single, unbiased molecular platform without the need for any specialized equipment. We also engineer a tandem BIND system as a high-throughput screening assay for discovering DNA binders, through which 8 DNA binders were successfully discovered from a library of 700 compounds.

Suggested Citation

  • Junpeng Xu & Guan Alex Wang & Lu Gao & Lang Wu & Qian Lei & Hui Deng & Feng Li, 2023. "Enabling programmable dynamic DNA chemistry using small-molecule DNA binders," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40032-3
    DOI: 10.1038/s41467-023-40032-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40032-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40032-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernard Yurke & Andrew J. Turberfield & Allen P. Mills & Friedrich C. Simmel & Jennifer L. Neumann, 2000. "A DNA-fuelled molecular machine made of DNA," Nature, Nature, vol. 406(6796), pages 605-608, August.
    2. Kakishi Uno & Nagisa Sugimoto & Yoshikatsu Sato, 2021. "N-aryl pyrido cyanine derivatives are nuclear and organelle DNA markers for two-photon and super-resolution imaging," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Andreas S. Biebricher & Iddo Heller & Roel F. H. Roijmans & Tjalle P. Hoekstra & Erwin J. G. Peterman & Gijs J. L. Wuite, 2015. "The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Walbrun & Tianhe Wang & Michael Matthies & Petr Šulc & Friedrich C. Simmel & Matthias Rief, 2024. "Single-molecule force spectroscopy of toehold-mediated strand displacement," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Christiaan N. Hulleman & Rasmus Ø. Thorsen & Eugene Kim & Cees Dekker & Sjoerd Stallinga & Bernd Rieger, 2021. "Simultaneous orientation and 3D localization microscopy with a Vortex point spread function," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    4. Ioanna Smyrlaki & Ferenc Fördős & Iris Rocamonde-Lago & Yang Wang & Boxuan Shen & Antonio Lentini & Vincent C. Luca & Björn Reinius & Ana I. Teixeira & Björn Högberg, 2024. "Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Ehsan Akbari & Melika Shahhosseini & Ariel Robbins & Michael G. Poirier & Jonathan W. Song & Carlos E. Castro, 2022. "Low cost and massively parallel force spectroscopy with fluid loading on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Ferdinand Greiss & Nicolas Lardon & Leonie Schütz & Yoav Barak & Shirley S. Daube & Elmar Weinhold & Vincent Noireaux & Roy Bar-Ziv, 2024. "A genetic circuit on a single DNA molecule as an autonomous dissipative nanodevice," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Yin-Wei Kuo & Mohammed Mahamdeh & Yazgan Tuna & Jonathon Howard, 2022. "The force required to remove tubulin from the microtubule lattice by pulling on its α-tubulin C-terminal tail," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Tuan Nguyen & Sai Li & Jeremy T-H Chang & John W. Watters & Htet Ng & Adewola Osunsade & Yael David & Shixin Liu, 2022. "Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Hong Kang & Yuexuan Yang & Bryan Wei, 2024. "Synthetic molecular switches driven by DNA-modifying enzymes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Yusuke Takezawa & Keita Mori & Wei-En Huang & Kotaro Nishiyama & Tong Xing & Takahiro Nakama & Mitsuhiko Shionoya, 2023. "Metal-mediated DNA strand displacement and molecular device operations based on base-pair switching of 5-hydroxyuracil nucleobases," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Sungwook Woo & Sinem K. Saka & Feng Xuan & Peng Yin, 2024. "Molecular robotic agents that survey molecular landscapes for information retrieval," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Zhao Zhang & Zhaomeng Feng & Xiaowei Zhao & Dominique Jean & Zhiheng Yu & Edwin R. Chapman, 2023. "Functionalization and higher-order organization of liposomes with DNA nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40032-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.