IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31069-x.html
   My bibliography  Save this article

The force required to remove tubulin from the microtubule lattice by pulling on its α-tubulin C-terminal tail

Author

Listed:
  • Yin-Wei Kuo

    (Yale University)

  • Mohammed Mahamdeh

    (Harvard Medical School
    Massachusetts General Hospital)

  • Yazgan Tuna

    (Yale University)

  • Jonathon Howard

    (Yale University)

Abstract

Severing enzymes and molecular motors extract tubulin from the walls of microtubules by exerting mechanical force on subunits buried in the lattice. However, how much force is needed to remove tubulin from microtubules is not known, nor is the pathway by which subunits are removed. Using a site-specific functionalization method, we applied forces to the C-terminus of α-tubulin with an optical tweezer and found that a force of ~30 pN is required to extract tubulin from the microtubule wall. Additionally, we discovered that partial unfolding is an intermediate step in tubulin removal. The unfolding and extraction forces are similar to those generated by AAA-unfoldases. Lastly, we show that three kinesin-1 motor proteins can also extract tubulin from the microtubule lattice. Our results provide the first experimental investigation of how tubulin responds to mechanical forces exerted on its α-tubulin C-terminal tail and have implications for the mechanisms of severing enzymes and microtubule stability.

Suggested Citation

  • Yin-Wei Kuo & Mohammed Mahamdeh & Yazgan Tuna & Jonathon Howard, 2022. "The force required to remove tubulin from the microtubule lattice by pulling on its α-tubulin C-terminal tail," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31069-x
    DOI: 10.1038/s41467-022-31069-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31069-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31069-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antonina Roll-Mecak & Ronald D. Vale, 2008. "Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin," Nature, Nature, vol. 451(7176), pages 363-367, January.
    2. Nikita B. Gudimchuk & Evgeni V. Ulyanov & Eileen O’Toole & Cynthia L. Page & Dmitrii S. Vinogradov & Garry Morgan & Gabriella Li & Jeffrey K. Moore & Ewa Szczesna & Antonina Roll-Mecak & Fazoil I. Ata, 2020. "Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    3. Mario J. Avellaneda & Kamila B. Franke & Vanda Sunderlikova & Bernd Bukau & Axel Mogk & Sander J. Tans, 2020. "Publisher Correction: Processive extrusion of polypeptide loops by a Hsp100 disaggregase," Nature, Nature, vol. 578(7796), pages 23-23, February.
    4. Olivier Hamant & Daisuke Inoue & David Bouchez & Jacques Dumais & Eric Mjolsness, 2019. "Are microtubules tension sensors?," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Andreas S. Biebricher & Iddo Heller & Roel F. H. Roijmans & Tjalle P. Hoekstra & Erwin J. G. Peterman & Gijs J. L. Wuite, 2015. "The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    6. Mario J. Avellaneda & Kamila B. Franke & Vanda Sunderlikova & Bernd Bukau & Axel Mogk & Sander J. Tans, 2020. "Processive extrusion of polypeptide loops by a Hsp100 disaggregase," Nature, Nature, vol. 578(7794), pages 317-320, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mireia Andreu-Carbó & Cornelia Egoldt & Marie-Claire Velluz & Charlotte Aumeier, 2024. "Microtubule damage shapes the acetylation gradient," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio Mirabello & Björn Wallner & Björn Nystedt & Stavros Azinas & Marta Carroni, 2024. "Unmasking AlphaFold to integrate experiments and predictions in multimeric complexes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Doan Tuong-Van Le & Thomas Eckert & Günther Woehlke, 2013. "Computer Simulation of Assembly and Co-operativity of Hexameric AAA ATPases," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-19, July.
    3. Christiaan N. Hulleman & Rasmus Ø. Thorsen & Eugene Kim & Cees Dekker & Sjoerd Stallinga & Bernd Rieger, 2021. "Simultaneous orientation and 3D localization microscopy with a Vortex point spread function," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Yang-Nim Park & David Morales & Emily H Rubinson & Daniel Masison & Evan Eisenberg & Lois E Greene, 2012. "Differences in the Curing of [PSI+] Prion by Various Methods of Hsp104 Inactivation," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-15, June.
    5. Tuo Ji & Lihua Zheng & Jiale Wu & Mei Duan & Qianwen Liu & Peng Liu & Chen Shen & Jinling Liu & Qinyi Ye & Jiangqi Wen & Jiangli Dong & Tao Wang, 2023. "The thioesterase APT1 is a bidirectional-adjustment redox sensor," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Tuan Nguyen & Sai Li & Jeremy T-H Chang & John W. Watters & Htet Ng & Adewola Osunsade & Yael David & Shixin Liu, 2022. "Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Junpeng Xu & Guan Alex Wang & Lu Gao & Lang Wu & Qian Lei & Hui Deng & Feng Li, 2023. "Enabling programmable dynamic DNA chemistry using small-molecule DNA binders," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31069-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.