IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31738-x.html
   My bibliography  Save this article

Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA

Author

Listed:
  • Tuan Nguyen

    (The Rockefeller University
    Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program)

  • Sai Li

    (The Rockefeller University)

  • Jeremy T-H Chang

    (The Rockefeller University
    Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program)

  • John W. Watters

    (The Rockefeller University)

  • Htet Ng

    (The Rockefeller University)

  • Adewola Osunsade

    (Memorial Sloan Kettering Cancer Center)

  • Yael David

    (Memorial Sloan Kettering Cancer Center)

  • Shixin Liu

    (The Rockefeller University)

Abstract

Biomolecular condensation constitutes an emerging mechanism for transcriptional regulation. Recent studies suggest that the co-condensation between transcription factors (TFs) and DNA can generate mechanical forces driving genome rearrangements. However, the reported forces generated by protein-DNA co-condensation are typically below one piconewton (pN), questioning its physiological significance. Moreover, the force-generating capacity of these condensates in the chromatin context remains unknown. Here, we show that Sox2, a nucleosome-binding pioneer TF, forms co-condensates with DNA and generates forces up to 7 pN, exerting considerable mechanical tension on DNA strands. We find that the disordered domains of Sox2 are required for maximum force generation but not for condensate formation. Furthermore, we show that nucleosomes dramatically attenuate the mechanical stress exerted by Sox2 by sequestering it from coalescing on bare DNA. Our findings reveal that TF-mediated DNA condensation can exert significant mechanical stress on the genome which can nonetheless be attenuated by the chromatin architecture.

Suggested Citation

  • Tuan Nguyen & Sai Li & Jeremy T-H Chang & John W. Watters & Htet Ng & Adewola Osunsade & Yael David & Shixin Liu, 2022. "Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31738-x
    DOI: 10.1038/s41467-022-31738-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31738-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31738-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam G. Larson & Daniel Elnatan & Madeline M. Keenen & Michael J. Trnka & Jonathan B. Johnston & Alma L. Burlingame & David A. Agard & Sy Redding & Geeta J. Narlikar, 2017. "Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin," Nature, Nature, vol. 547(7662), pages 236-240, July.
    2. Patrick Cramer, 2019. "Organization and regulation of gene transcription," Nature, Nature, vol. 573(7772), pages 45-54, September.
    3. Zachariah E. Holmes & Desmond J. Hamilton & Taeyoung Hwang & Nicholas V. Parsonnet & John L. Rinn & Deborah S. Wuttke & Robert T. Batey, 2020. "The Sox2 transcription factor binds RNA," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Andreas S. Biebricher & Iddo Heller & Roel F. H. Roijmans & Tjalle P. Hoekstra & Erwin J. G. Peterman & Gijs J. L. Wuite, 2015. "The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    5. Rajesh Sharma & Kyoung-Jae Choi & My Diem Quan & Sonum Sharma & Banumathi Sankaran & Hyekyung Park & Anel LaGrone & Jean J. Kim & Kevin R. MacKenzie & Allan Chris M. Ferreon & Choel Kim & Josephine C., 2021. "Liquid condensation of reprogramming factor KLF4 with DNA provides a mechanism for chromatin organization," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    6. Georg Krainer & Timothy J. Welsh & Jerelle A. Joseph & Jorge R. Espinosa & Sina Wittmann & Ella Csilléry & Akshay Sridhar & Zenon Toprakcioglu & Giedre Gudiškytė & Magdalena A. Czekalska & William E. , 2021. "Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sveinn Bjarnason & Jordan A. P. McIvor & Andreas Prestel & Kinga S. Demény & Jakob T. Bullerjahn & Birthe B. Kragelund & Davide Mercadante & Pétur O. Heidarsson, 2024. "DNA binding redistributes activation domain ensemble and accessibility in pioneer factor Sox2," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Ya Gao & Daisylyn Senna Tan & Mathias Girbig & Haoqing Hu & Xiaomin Zhou & Qianwen Xie & Shi Wing Yeung & Kin Shing Lee & Sik Yin Ho & Vlad Cojocaru & Jian Yan & Georg K. A. Hochberg & Alex Mendoza & , 2024. "The emergence of Sox and POU transcription factors predates the origins of animal stem cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manisha Poudyal & Komal Patel & Laxmikant Gadhe & Ajay Singh Sawner & Pradeep Kadu & Debalina Datta & Semanti Mukherjee & Soumik Ray & Ambuja Navalkar & Siddhartha Maiti & Debdeep Chatterjee & Jyoti D, 2023. "Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Chun-Yi Cho & Patrick H. O’Farrell, 2023. "Stepwise modifications of transcriptional hubs link pioneer factor activity to a burst of transcription," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Aishwarya Agarwal & Lisha Arora & Sandeep K. Rai & Anamika Avni & Samrat Mukhopadhyay, 2022. "Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Baolei Yuan & Xuan Zhou & Keiichiro Suzuki & Gerardo Ramos-Mandujano & Mengge Wang & Muhammad Tehseen & Lorena V. Cortés-Medina & James J. Moresco & Sarah Dunn & Reyna Hernandez-Benitez & Tomoaki Hish, 2022. "Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Yifeng Qi & Bin Zhang, 2021. "Chromatin network retards nucleoli coalescence," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Hema M. Swasthi & Joseph L. Basalla & Claire E. Dudley & Anthony G. Vecchiarelli & Matthew R. Chapman, 2023. "Cell surface-localized CsgF condensate is a gatekeeper in bacterial curli subunit secretion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Wenqi Sun & Qianhua Dong & Xueqing Li & Jinxin Gao & Xianwen Ye & Chunyi Hu & Fei Li & Yong Chen, 2024. "The SUN-family protein Sad1 mediates heterochromatin spatial organization through interaction with histone H2A-H2B," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Georg Krainer & Kadi L. Saar & William E. Arter & Timothy J. Welsh & Magdalena A. Czekalska & Raphaël P. B. Jacquat & Quentin Peter & Walther C. Traberg & Arvind Pujari & Akhila K. Jayaram & Pavankuma, 2023. "Direct digital sensing of protein biomarkers in solution," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Christiaan N. Hulleman & Rasmus Ø. Thorsen & Eugene Kim & Cees Dekker & Sjoerd Stallinga & Bernd Rieger, 2021. "Simultaneous orientation and 3D localization microscopy with a Vortex point spread function," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Deqiang Kong & Yang Zhou & Yu Wei & Xinyi Wang & Qin Huang & Xianyun Gao & Hang Wan & Mengyao Liu & Liping Kang & Guiling Yu & Jianli Yin & Ningzi Guan & Haifeng Ye, 2024. "Exploring plant-derived phytochrome chaperone proteins for light-switchable transcriptional regulation in mammals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Taehyun Kim & Jaeyoon Yoo & Sungho Do & Dong Soo Hwang & YongKeun Park & Yongdae Shin, 2023. "RNA-mediated demixing transition of low-density condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Andrew Z. Lin & Kiersten M. Ruff & Furqan Dar & Ameya Jalihal & Matthew R. King & Jared M. Lalmansingh & Ammon E. Posey & Nadia A. Erkamp & Ian Seim & Amy S. Gladfelter & Rohit V. Pappu, 2023. "Dynamical control enables the formation of demixed biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Catherine Naughton & Covadonga Huidobro & Claudia R. Catacchio & Adam Buckle & Graeme R. Grimes & Ryu-Suke Nozawa & Stefania Purgato & Mariano Rocchi & Nick Gilbert, 2022. "Human centromere repositioning activates transcription and opens chromatin fibre structure," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Mitsuaki Fujimoto & Ryosuke Takii & Masaki Matsumoto & Mariko Okada & Keiich I. Nakayama & Ryuichiro Nakato & Katsunori Fujiki & Katsuhiko Shirahige & Akira Nakai, 2022. "HSF1 phosphorylation establishes an active chromatin state via the TRRAP–TIP60 complex and promotes tumorigenesis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. William E. Arter & Runzhang Qi & Nadia A. Erkamp & Georg Krainer & Kieran Didi & Timothy J. Welsh & Julia Acker & Jonathan Nixon-Abell & Seema Qamar & Jordina Guillén-Boixet & Titus M. Franzmann & Dav, 2022. "Biomolecular condensate phase diagrams with a combinatorial microdroplet platform," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Hiroaki Ohishi & Seiru Shimada & Satoshi Uchino & Jieru Li & Yuko Sato & Manabu Shintani & Hitoshi Owada & Yasuyuki Ohkawa & Alexandros Pertsinidis & Takashi Yamamoto & Hiroshi Kimura & Hiroshi Ochiai, 2022. "STREAMING-tag system reveals spatiotemporal relationships between transcriptional regulatory factors and transcriptional activity," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Hyun-Soo Kim & Benjamin Roche & Sonali Bhattacharjee & Leila Todeschini & An-Yun Chang & Christopher Hammell & André Verdel & Robert A. Martienssen, 2024. "Clr4SUV39H1 ubiquitination and non-coding RNA mediate transcriptional silencing of heterochromatin via Swi6 phase separation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Marta Vicioso-Mantis & Raquel Fueyo & Claudia Navarro & Sara Cruz-Molina & Wilfred F. J. Ijcken & Elena Rebollo & Álvaro Rada-Iglesias & Marian A. Martínez-Balbás, 2022. "JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Pan Jia & Xiang Li & Xuelei Wang & Liangjiao Yao & Yingying Xu & Yu Hu & Wenwen Xu & Zhe He & Qifan Zhao & Yicong Deng & Yi Zang & Meiyu Zhang & Yan Zhang & Jun Qin & Wei Lu, 2021. "ZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarization," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31738-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.