IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8304.html
   My bibliography  Save this article

The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics

Author

Listed:
  • Andreas S. Biebricher

    (LaserLaB Amsterdam, VU University Amsterdam)

  • Iddo Heller

    (LaserLaB Amsterdam, VU University Amsterdam)

  • Roel F. H. Roijmans

    (LaserLaB Amsterdam, VU University Amsterdam)

  • Tjalle P. Hoekstra

    (LaserLaB Amsterdam, VU University Amsterdam)

  • Erwin J. G. Peterman

    (LaserLaB Amsterdam, VU University Amsterdam)

  • Gijs J. L. Wuite

    (LaserLaB Amsterdam, VU University Amsterdam)

Abstract

DNA intercalators are widely used as fluorescent probes to visualize DNA and DNA transactions in vivo and in vitro. It is well known that they perturb DNA structure and stability, which can in turn influence DNA-processing by proteins. Here we elucidate this perturbation by combining single-dye fluorescence microscopy with force spectroscopy and measuring the kinetics of DNA intercalation by the mono- and bis-intercalating cyanine dyes SYTOX Orange, SYTOX Green, SYBR Gold, YO-PRO-1, YOYO-1 and POPO-3. We show that their DNA-binding affinity is mainly governed by a strongly tension-dependent dissociation rate. These rates can be tuned over a range of seven orders of magnitude by changing DNA tension, intercalating species and ionic strength. We show that optimizing these rates minimizes the impact of intercalators on strand separation and enzymatic activity. These new insights provide handles for the improved use of intercalators as DNA probes with minimal perturbation and maximal efficacy.

Suggested Citation

  • Andreas S. Biebricher & Iddo Heller & Roel F. H. Roijmans & Tjalle P. Hoekstra & Erwin J. G. Peterman & Gijs J. L. Wuite, 2015. "The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8304
    DOI: 10.1038/ncomms8304
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8304
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junpeng Xu & Guan Alex Wang & Lu Gao & Lang Wu & Qian Lei & Hui Deng & Feng Li, 2023. "Enabling programmable dynamic DNA chemistry using small-molecule DNA binders," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Christiaan N. Hulleman & Rasmus Ø. Thorsen & Eugene Kim & Cees Dekker & Sjoerd Stallinga & Bernd Rieger, 2021. "Simultaneous orientation and 3D localization microscopy with a Vortex point spread function," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Tuan Nguyen & Sai Li & Jeremy T-H Chang & John W. Watters & Htet Ng & Adewola Osunsade & Yael David & Shixin Liu, 2022. "Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yin-Wei Kuo & Mohammed Mahamdeh & Yazgan Tuna & Jonathon Howard, 2022. "The force required to remove tubulin from the microtubule lattice by pulling on its α-tubulin C-terminal tail," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.