IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39725-6.html
   My bibliography  Save this article

2D CdPS3-based versatile superionic conductors

Author

Listed:
  • Xin Yu

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Wencai Ren

    (Chinese Academy of Sciences
    University of Science and Technology of China)

Abstract

Ion transport in nanochannels is crucial for applications in life science, filtration, and energy storage. However, multivalent ion transport is more difficult than the monovalent analogues due to the steric effect and stronger interactions with channel walls, and the ion mobility decreases significantly as temperature decreases. Although many kinds of solid ionic conductors (SICs) have been developed, they can attain practically useful conductivities (0.01 S cm−1) only for monovalent ions above 0 °C. Here, we report a class of versatile superionic conductors, monolayer CdPS3 nanosheets-based membranes intercalated with diverse cations with a high density up to ∼2 nm−2. They exhibit unexpectedly similar superhigh ion conductivities for monovalent (K+, Na+, Li+) and multivalent ions (Ca2+, Mg2+, Al3+), ∼0.01 to 0.8 S cm−1 in the temperature range of −30 ‒ 90 °C, which are one to two orders of magnitude higher than those of the corresponding best SICs. We reveal that the high conductivity originates from the concerted movement of high-density cations in the well-ordered nanochannels with high mobility and low energy barrier. Our work opens an avenue for designing superionic conductors that can conduct various cations and provides possibilities for discovering unusual nanofluidic phenomena in nanocapillaries.

Suggested Citation

  • Xin Yu & Wencai Ren, 2023. "2D CdPS3-based versatile superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39725-6
    DOI: 10.1038/s41467-023-39725-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39725-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39725-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco-Tulio F. Rodrigues & Ganguli Babu & Hemtej Gullapalli & Kaushik Kalaga & Farheen N. Sayed & Keiko Kato & Jarin Joyner & Pulickel M. Ajayan, 2017. "A materials perspective on Li-ion batteries at extreme temperatures," Nature Energy, Nature, vol. 2(8), pages 1-14, August.
    2. Qiu Zhang & Yilin Ma & Yong Lu & Lin Li & Fang Wan & Kai Zhang & Jun Chen, 2020. "Modulating electrolyte structure for ultralow temperature aqueous zinc batteries," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Xingfeng He & Yizhou Zhu & Yifei Mo, 2017. "Origin of fast ion diffusion in super-ionic conductors," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    4. K. Huang & P. Rowe & C. Chi & V. Sreepal & T. Bohn & K.-G. Zhou & Y. Su & E. Prestat & P. Balakrishna Pillai & C. T. Cherian & A. Michaelides & R. R. Nair, 2020. "Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil–water separation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Liang Chen & Guosheng Shi & Jie Shen & Bingquan Peng & Bowu Zhang & Yuzhu Wang & Fenggang Bian & Jiajun Wang & Deyuan Li & Zhe Qian & Gang Xu & Gongping Liu & Jianrong Zeng & Lijuan Zhang & Yizhou Yan, 2017. "Ion sieving in graphene oxide membranes via cationic control of interlayer spacing," Nature, Nature, vol. 550(7676), pages 380-383, October.
    6. Lalita Saini & Siva Sankar Nemala & Aparna Rathi & Suvigya Kaushik & Gopinadhan Kalon, 2022. "Selective transport of water molecules through interlayer spaces in graphite," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. G. Algara-Siller & O. Lehtinen & F. C. Wang & R. R. Nair & U. Kaiser & H. A. Wu & A. K. Geim & I. V. Grigorieva, 2015. "Square ice in graphene nanocapillaries," Nature, Nature, vol. 519(7544), pages 443-445, March.
    8. Simon Bernèche & Benoît Roux, 2001. "Energetics of ion conduction through the K+ channel," Nature, Nature, vol. 414(6859), pages 73-77, November.
    9. Wenzhong Bao & Jiayu Wan & Xiaogang Han & Xinghan Cai & Hongli Zhu & Dohun Kim & Dakang Ma & Yunlu Xu & Jeremy N. Munday & H. Dennis Drew & Michael S. Fuhrer & Liangbing Hu, 2014. "Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nawapong Unsuree & Sorasak Phanphak & Pongthep Prajongtat & Aritsa Bunpheng & Kulpavee Jitapunkul & Pornpis Kongputhon & Pannaree Srinoi & Pawin Iamprasertkun & Wisit Hirunpinyopas, 2021. "A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives," Energies, MDPI, vol. 14(18), pages 1-38, September.
    2. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Zhipeng Wang & Liqin Huang & Xue Dong & Tong Wu & Qi Qing & Jing Chen & Yuexiang Lu & Chao Xu, 2023. "Ion sieving in graphene oxide membrane enables efficient actinides/lanthanides separation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Youyou Lu & Xuan Zhang & Liyan Zhao & Hong Liu & Mi Yan & Xiaochen Zhang & Kenji Mochizuki & Shikuan Yang, 2023. "Metal-organic framework template-guided electrochemical lithography on substrates for SERS sensing applications," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Geraint Sullivan & Chris Griffiths & Eifion Jewell & Justin Searle & Jonathon Elvins, 2023. "Cycling Stability of Calcium-Impregnated Vermiculite in Open Reactor Used as a Thermochemical Storage Material," Energies, MDPI, vol. 16(21), pages 1-12, October.
    6. Shi, Xingyi & Li, Guangzhe & Zhang, Ruihan & Esan, Oladapo Christopher & Huo, Xiaoyu & Wu, Qixing & An, Liang, 2024. "Operation of rechargeable metal-ion batteries in low-temperature environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    8. Tomohito Sudare & Takuro Yamaguchi & Mizuki Ueda & Hiromasa Shiiba & Hideki Tanaka & Mongkol Tipplook & Fumitaka Hayashi & Katsuya Teshima, 2022. "Critical role of water structure around interlayer ions for ion storage in layered double hydroxides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Guo-Rui Zhu & Qin Zhang & Qing-Song Liu & Qi-Yao Bai & Yi-Zhou Quan & You Gao & Gang Wu & Yu-Zhong Wang, 2023. "Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    13. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Felix Kohler & Olivier Pierre-Louis & Dag Kristian Dysthe, 2022. "Crystal growth in confinement," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Quan Peng & Ruoyu Wang & Zilin Zhao & Shihong Lin & Ying Liu & Dianyu Dong & Zheng Wang & Yiman He & Yuzhang Zhu & Jian Jin & Lei Jiang, 2024. "Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Ahmed Rohaim & Bram J. A. Vermeulen & Jing Li & Felix Kümmerer & Federico Napoli & Lydia Blachowicz & João Medeiros-Silva & Benoît Roux & Markus Weingarth, 2022. "A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Yao-Jie Lei & Xinxin Lu & Hirofumi Yoshikawa & Daiju Matsumura & Yameng Fan & Lingfei Zhao & Jiayang Li & Shijian Wang & Qinfen Gu & Hua-Kun Liu & Shi-Xue Dou & Shanmukaraj Devaraj & Teofilo Rojo & We, 2024. "Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Xinyue Wen & Tobias Foller & Xiaoheng Jin & Tiziana Musso & Priyank Kumar & Rakesh Joshi, 2022. "Understanding water transport through graphene-based nanochannels via experimental control of slip length," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Guanjie Li & Zihan Zhao & Shilin Zhang & Liang Sun & Mingnan Li & Jodie A. Yuwono & Jianfeng Mao & Junnan Hao & Jitraporn (Pimm) Vongsvivut & Lidan Xing & Chun-Xia Zhao & Zaiping Guo, 2023. "A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Hao-Ting Chin & Jiri Klimes & I-Fan Hu & Ding-Rui Chen & Hai-Thai Nguyen & Ting-Wei Chen & Shao-Wei Ma & Mario Hofmann & Chi-Te Liang & Ya-Ping Hsieh, 2021. "Ferroelectric 2D ice under graphene confinement," Nature Communications, Nature, vol. 12(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39725-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.