IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53804-2.html
   My bibliography  Save this article

Energetic and durable all-polymer aqueous battery for sustainable, flexible power

Author

Listed:
  • Yang Hong

    (Harbin Institute of Technology (Shenzhen)
    The University of Tokyo)

  • Kangkang Jia

    (Harbin Institute of Technology (Shenzhen))

  • Yueyu Zhang

    (Wenzhou Institute University of Chinese Academy of Sciences)

  • Ziyuan Li

    (Ningbo University)

  • Junlin Jia

    (East China University of Science and Technology)

  • Jing Chen

    (Yangzhou University)

  • Qimin Liang

    (Harbin Institute of Technology (Shenzhen))

  • Huarui Sun

    (Harbin Institute of Technology (Shenzhen))

  • Qiang Gao

    (Yangzhou University)

  • Dong Zhou

    (Tsinghua University)

  • Ruhong Li

    (Zhejiang University)

  • Xiaoli Dong

    (Fudan University)

  • Xiulin Fan

    (Zhejiang University)

  • Sisi He

    (Harbin Institute of Technology (Shenzhen))

Abstract

All-polymer aqueous batteries, featuring electrodes and electrolytes made entirely from polymers, advance wearable electronics through their processing ease, inherent safety, and sustainability. Challenges persist with the instability of polymer electrode redox products in aqueous environments, which fail to achieve high performance in all-polymer aqueous batteries. Here, we report a polymer-aqueous electrolyte designed to stabilize polymer electrode redox products by modulating the solvation layers and forming a solid-electrolyte interphase. Polyaniline is selected as an example for its dual functionality as a cathode or anode working by p/n doping mechanisms. This approach pioneers the application of polyaniline as an anode and enhances the high-voltage stability of polyaniline cathode in an aqueous electrolyte. The resulting all-polymer aqueous sodium-ion battery with polyaniline as symmetric electrodes exhibits a high capacity of 139 mAh/g, energy density of 153 Wh/kg, and a retention of over 92% after 4800 cycles. Spectroscopic characterizations have elucidated the hydration structure, solid-electrolyte interphase, and dual-ion doping mechanism. Large-scale all-polymer flexible batteries are fabricated with excellent flexibility and recyclability, heralding a paradigmatic approach to sustainable, wearable energy storage.

Suggested Citation

  • Yang Hong & Kangkang Jia & Yueyu Zhang & Ziyuan Li & Junlin Jia & Jing Chen & Qimin Liang & Huarui Sun & Qiang Gao & Dong Zhou & Ruhong Li & Xiaoli Dong & Xiulin Fan & Sisi He, 2024. "Energetic and durable all-polymer aqueous battery for sustainable, flexible power," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53804-2
    DOI: 10.1038/s41467-024-53804-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53804-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53804-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiu Zhang & Yilin Ma & Yong Lu & Lin Li & Fang Wan & Kai Zhang & Jun Chen, 2020. "Modulating electrolyte structure for ultralow temperature aqueous zinc batteries," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Dejian Dong & Tairan Wang & Yue Sun & Jun Fan & Yi-Chun Lu, 2023. "Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes," Nature Sustainability, Nature, vol. 6(11), pages 1474-1484, November.
    3. Zhaoheng Liang & Fei Tian & Gongzheng Yang & Chengxin Wang, 2023. "Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Hooman Yaghoobnejad Asl & Arumugam Manthiram, 2021. "Toward sustainable batteries," Nature Sustainability, Nature, vol. 4(5), pages 379-380, May.
    5. Shuhong Jiao & Xiaodi Ren & Ruiguo Cao & Mark H. Engelhard & Yuzi Liu & Dehong Hu & Donghai Mei & Jianming Zheng & Wengao Zhao & Qiuyan Li & Ning Liu & Brian D. Adams & Cheng Ma & Jun Liu & Ji-Guang Z, 2018. "Stable cycling of high-voltage lithium metal batteries in ether electrolytes," Nature Energy, Nature, vol. 3(9), pages 739-746, September.
    6. Peng Peng & Arman Shehabi, 2023. "Regional economic potential for recycling consumer waste electronics in the United States," Nature Sustainability, Nature, vol. 6(1), pages 93-102, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baojiu Hao & Jinqiu Zhou & Hao Yang & Changhao Zhu & Zhenkang Wang & Jie Liu & Chenglin Yan & Tao Qian, 2024. "Concentration polarization induced phase rigidification in ultralow salt colloid chemistry to stabilize cryogenic Zn batteries," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Zhuangzhuang Cui & Zhuangzhuang Jia & Digen Ruan & Qingshun Nian & Jiajia Fan & Shunqiang Chen & Zixu He & Dazhuang Wang & Jinyu Jiang & Jun Ma & Xing Ou & Shuhong Jiao & Qingsong Wang & Xiaodi Ren, 2024. "Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Weibin Yan & Ying Liu & Jiazhen Qiu & Feipeng Tan & Jiahui Liang & Xinze Cai & Chunlong Dai & Jiangqi Zhao & Zifeng Lin, 2024. "A tripartite synergistic optimization strategy for zinc-iodine batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Meijia Qiu & Peng Sun & Yuxuan Liang & Jian Chen & Zhong Lin Wang & Wenjie Mai, 2024. "Tailoring tetrahedral and pair-correlation entropies of glass-forming liquids for energy storage applications at ultralow temperatures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Chutao Wang & Zongqiang Sun & Yaqing Liu & Lin Liu & Xiaoting Yin & Qing Hou & Jingmin Fan & Jiawei Yan & Ruming Yuan & Mingsen Zheng & Quanfeng Dong, 2024. "A weakly coordinating-intervention strategy for modulating Na+ solvation sheathes and constructing robust interphase in sodium-metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Guanjie Li & Zihan Zhao & Shilin Zhang & Liang Sun & Mingnan Li & Jodie A. Yuwono & Jianfeng Mao & Junnan Hao & Jitraporn (Pimm) Vongsvivut & Lidan Xing & Chun-Xia Zhao & Zaiping Guo, 2023. "A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Yan Zhao & Tianhong Zhou & Mounir Mensi & Jang Wook Choi & Ali Coskun, 2023. "Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Qidi Wang & Chenglong Zhao & Jianlin Wang & Zhenpeng Yao & Shuwei Wang & Sai Govind Hari Kumar & Swapna Ganapathy & Stephen Eustace & Xuedong Bai & Baohua Li & Marnix Wagemaker, 2023. "High entropy liquid electrolytes for lithium batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Wei Wang & Shan Chen & Xuelong Liao & Rong Huang & Fengmei Wang & Jialei Chen & Yaxin Wang & Fei Wang & Huan Wang, 2023. "Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Yao Wang & Shuyu Dong & Yifu Gao & Pui-Kit Lee & Yao Tian & Yuefeng Meng & Xia Hu & Xin Zhao & Baohua Li & Dong Zhou & Feiyu Kang, 2024. "Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Danfeng Zhang & Ming Liu & Jiabin Ma & Ke Yang & Zhen Chen & Kaikai Li & Chen Zhang & Yinping Wei & Min Zhou & Peng Wang & Yuanbiao He & Wei Lv & Quan-Hong Yang & Feiyu Kang & Yan-Bing He, 2022. "Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Hyeokjin Kwon & Hongsin Kim & Jaemin Hwang & Wonsik Oh & Youngil Roh & Dongseok Shin & Hee-Tak Kim, 2024. "Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion," Nature Energy, Nature, vol. 9(1), pages 57-69, January.
    16. Junbo Zhang & Haikuo Zhang & Suting Weng & Ruhong Li & Di Lu & Tao Deng & Shuoqing Zhang & Ling Lv & Jiacheng Qi & Xuezhang Xiao & Liwu Fan & Shujiang Geng & Fuhui Wang & Lixin Chen & Malachi Noked & , 2023. "Multifunctional solvent molecule design enables high-voltage Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Xin Yu & Wencai Ren, 2023. "2D CdPS3-based versatile superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Wenyao Zhang & Muyao Dong & Keren Jiang & Diling Yang & Xuehai Tan & Shengli Zhai & Renfei Feng & Ning Chen & Graham King & Hao Zhang & Hongbo Zeng & Hui Li & Markus Antonietti & Zhi Li, 2022. "Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Muhammad Mominur Rahman & Sha Tan & Yang Yang & Hui Zhong & Sanjit Ghose & Iradwikanari Waluyo & Adrian Hunt & Lu Ma & Xiao-Qing Yang & Enyuan Hu, 2023. "An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Meijia Qiu & Peng Sun & Kai Han & Zhenjiang Pang & Jun Du & Jinliang Li & Jian Chen & Zhong Lin Wang & Wenjie Mai, 2023. "Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at −80 °C," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53804-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.