IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v2y2017i8d10.1038_nenergy.2017.108.html
   My bibliography  Save this article

A materials perspective on Li-ion batteries at extreme temperatures

Author

Listed:
  • Marco-Tulio F. Rodrigues

    (Rice University)

  • Ganguli Babu

    (Rice University)

  • Hemtej Gullapalli

    (Rice University)

  • Kaushik Kalaga

    (Rice University)

  • Farheen N. Sayed

    (Rice University)

  • Keiko Kato

    (Rice University)

  • Jarin Joyner

    (Rice University)

  • Pulickel M. Ajayan

    (Rice University)

Abstract

With the continuous upsurge in demand for energy storage, batteries are increasingly required to operate under extreme environmental conditions. Although they are at the technological forefront, Li-ion batteries have long been limited to room temperature, as internal phenomena during their operation cause thermal fluctuations. This has been the reason for many battery explosions in recent consumer products. While traditional efforts to address these issues focused on thermal management strategies, the performance and safety of Li-ion batteries at both low ( 60 °C) temperatures are inherently related to their respective components, such as electrode and electrolyte materials and the so-called solid-electrolyte interphases. This Review examines recent research that considers thermal tolerance of Li-ion batteries from a materials perspective, spanning a wide temperature spectrum (−60 °C to 150 °C). The structural stability of promising cathodes, issues with anode passivation, and the competency of various electrolyte, binder and current collectors are compared for their thermal workability. The possibilities offered by each of these cell components could extend the environmental frontiers of commercial Li-ion batteries.

Suggested Citation

  • Marco-Tulio F. Rodrigues & Ganguli Babu & Hemtej Gullapalli & Kaushik Kalaga & Farheen N. Sayed & Keiko Kato & Jarin Joyner & Pulickel M. Ajayan, 2017. "A materials perspective on Li-ion batteries at extreme temperatures," Nature Energy, Nature, vol. 2(8), pages 1-14, August.
  • Handle: RePEc:nat:natene:v:2:y:2017:i:8:d:10.1038_nenergy.2017.108
    DOI: 10.1038/nenergy.2017.108
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy2017108
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2017.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makeen, Peter & Ghali, Hani A. & Memon, Saim & Duan, Fang, 2022. "Impacts of electric vehicle fast charging under dynamic temperature and humidity: Experimental and theoretically validated model analyses," Energy, Elsevier, vol. 261(PB).
    2. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    3. Jung Tae Kim & Adwitiya Rao & Heng-Yong Nie & Yang Hu & Weihan Li & Feipeng Zhao & Sixu Deng & Xiaoge Hao & Jiamin Fu & Jing Luo & Hui Duan & Changhong Wang & Chandra Veer Singh & Xueliang Sun, 2023. "Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    5. Cai, Fengyang & Chang, Huawei & Yang, Zhengbo & Tu, Zhengkai, 2024. "Experimental study on self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current," Applied Energy, Elsevier, vol. 354(PB).
    6. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
    7. Cheng, Gong & Wang, Zhangzhou & Wang, Xinzhi & He, Yurong, 2022. "All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity," Applied Energy, Elsevier, vol. 322(C).
    8. Ban Seok Lee & Sang-Hwan Oh & Yoon Jeong Choi & Min-Jeong Yi & So Hee Kim & Shin-Yeong Kim & Yung-Eun Sung & Sun Young Shin & Yongju Lee & Seung-Ho Yu, 2023. "SiO-induced thermal instability and interplay between graphite and SiO in graphite/SiO composite anode," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Yao-Jie Lei & Xinxin Lu & Hirofumi Yoshikawa & Daiju Matsumura & Yameng Fan & Lingfei Zhao & Jiayang Li & Shijian Wang & Qinfen Gu & Hua-Kun Liu & Shi-Xue Dou & Shanmukaraj Devaraj & Teofilo Rojo & We, 2024. "Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
    12. Xin Yu & Wencai Ren, 2023. "2D CdPS3-based versatile superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Shi, Xingyi & Li, Guangzhe & Zhang, Ruihan & Esan, Oladapo Christopher & Huo, Xiaoyu & Wu, Qixing & An, Liang, 2024. "Operation of rechargeable metal-ion batteries in low-temperature environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Wang, Shenghui & Ma, Zhichao & Zhao, Wenyang & Guo, Zixin & Zhao, Hongwei & Ren, Luquan, 2024. "Deterioration mechanism of the wettability of a lithium-ion battery separator induced by low-temperature discharge," Applied Energy, Elsevier, vol. 364(C).
    17. Guo-Rui Zhu & Qin Zhang & Qing-Song Liu & Qi-Yao Bai & Yi-Zhou Quan & You Gao & Gang Wu & Yu-Zhong Wang, 2023. "Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Zhuo Li & Rui Yu & Suting Weng & Qinghua Zhang & Xuefeng Wang & Xin Guo, 2023. "Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:2:y:2017:i:8:d:10.1038_nenergy.2017.108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.