Operation of rechargeable metal-ion batteries in low-temperature environments
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2023.113861
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiulin Fan & Xiao Ji & Long Chen & Ji Chen & Tao Deng & Fudong Han & Jie Yue & Nan Piao & Ruixing Wang & Xiuquan Zhou & Xuezhang Xiao & Lixin Chen & Chunsheng Wang, 2019. "All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents," Nature Energy, Nature, vol. 4(10), pages 882-890, October.
- Marco-Tulio F. Rodrigues & Ganguli Babu & Hemtej Gullapalli & Kaushik Kalaga & Farheen N. Sayed & Keiko Kato & Jarin Joyner & Pulickel M. Ajayan, 2017. "A materials perspective on Li-ion batteries at extreme temperatures," Nature Energy, Nature, vol. 2(8), pages 1-14, August.
- Jang-Yeon Hwang & Seung-Min Oh & Seung-Taek Myung & Kyung Yoon Chung & Ilias Belharouak & Yang-Kook Sun, 2015. "Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
- Yuwei Zhao & Yue Lu & Huiping Li & Yongbin Zhu & You Meng & Na Li & Donghong Wang & Feng Jiang & Funian Mo & Changbai Long & Ying Guo & Xinliang Li & Zhaodong Huang & Qing Li & Johnny C. Ho & Jun Fan , 2022. "Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Chao-Yang Wang & Guangsheng Zhang & Shanhai Ge & Terrence Xu & Yan Ji & Xiao-Guang Yang & Yongjun Leng, 2016. "Lithium-ion battery structure that self-heats at low temperatures," Nature, Nature, vol. 529(7587), pages 515-518, January.
- Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Su, Xiaojia & He, Xitian & Zhao, Kejie, 2019. "An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction," Applied Energy, Elsevier, vol. 256(C).
- Jiang, Jiuchun & Ruan, Haijun & Sun, Bingxiang & Wang, Leyi & Gao, Wenzhong & Zhang, Weige, 2018. "A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack," Applied Energy, Elsevier, vol. 230(C), pages 257-266.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Gong & Wang, Zhangzhou & Wang, Xinzhi & He, Yurong, 2022. "All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity," Applied Energy, Elsevier, vol. 322(C).
- Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2022. "Self-powered heating strategy for lithium-ion battery pack applied in extremely cold climates," Energy, Elsevier, vol. 239(PB).
- Xiong, Rui & Li, Zhengyang & Yang, Ruixin & Shen, Weixiang & Ma, Suxiao & Sun, Fengchun, 2022. "Fast self-heating battery with anti-aging awareness for freezing climates application," Applied Energy, Elsevier, vol. 324(C).
- Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).
- Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
- Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.
- Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
- Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Qin, Yudi & Xu, Zhoucheng & Xiao, Shengran & Gao, Ming & Bai, Jian & Liebig, Dorothea & Lu, Languang & Han, Xuebing & Li, Yalun & Du, Jiuyu & Ouyang, Minggao, 2023. "Temperature consistency–oriented rapid heating strategy combining pulsed operation and external thermal management for lithium-ion batteries," Applied Energy, Elsevier, vol. 335(C).
- Lu, Fenglian & Chen, Weiye & Hu, Shuzhi & Chen, Lei & Sharshir, Swellam W. & Dong, Chuanshuai & Zhang, Lizhi, 2024. "Achieving a smart thermal management for lithium-ion batteries by electrically-controlled crystallization of supercooled calcium chloride hexahydrate solution," Applied Energy, Elsevier, vol. 364(C).
- Guo, Shanshan & Yang, Ruixin & Shen, Weixiang & Liu, Yongsheng & Guo, Shenggang, 2022. "DC-AC hybrid rapid heating method for lithium-ion batteries at high state of charge operated from low temperatures," Energy, Elsevier, vol. 238(PB).
- Lee, Seunghoon & Lee, Hyoseong & Jun, Yong Joo & Lee, Hoseong, 2024. "Hybrid battery thermal management system coupled with paraffin/copper foam composite phase change material," Applied Energy, Elsevier, vol. 353(PA).
- Tang, Aihua & Gong, Peng & Huang, Yukun & Xiong, Rui & Hu, Yuanzhi & Feng, Renhua, 2024. "Orthogonal design based pulse preheating strategy for cold lithium-ion batteries," Applied Energy, Elsevier, vol. 355(C).
- Li, Yong & Yang, Jie & Song, Jian, 2017. "Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1503-1512.
- Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Su, Xiaojia & He, Xitian & Zhao, Kejie, 2019. "An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction," Applied Energy, Elsevier, vol. 256(C).
- Ghassemi, Alireza & Hollenkamp, Anthony F. & Chakraborty Banerjee, Parama & Bahrani, Behrooz, 2022. "Impact of high-amplitude alternating current on LiFePO4 battery life performance: Investigation of AC-preheating and microcycling effects," Applied Energy, Elsevier, vol. 314(C).
- Wang, Yujie & Zhang, Xingchen & Chen, Zonghai, 2022. "Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges," Applied Energy, Elsevier, vol. 313(C).
- Cai, Fengyang & Chang, Huawei & Yang, Zhengbo & Tu, Zhengkai, 2024. "Experimental study on self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current," Applied Energy, Elsevier, vol. 354(PB).
- Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
- Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
More about this item
Keywords
Metal-ion batteries; Low temperature; Ion-transport issues; Rate-limiting steps; Thermal activation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007190. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.