IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v546y2017i7660d10.1038_nature22986.html
   My bibliography  Save this article

On-chip generation of high-dimensional entangled quantum states and their coherent control

Author

Listed:
  • Michael Kues

    (Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet
    School of Engineering, University of Glasgow, Rankine Building)

  • Christian Reimer

    (Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet)

  • Piotr Roztocki

    (Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet)

  • Luis Romero Cortés

    (Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet)

  • Stefania Sciara

    (Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet
    Information Engineering and Mathematical Models, University of Palermo)

  • Benjamin Wetzel

    (Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet
    School of Mathematical and Physical Sciences, University of Sussex)

  • Yanbing Zhang

    (Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet)

  • Alfonso Cino

    (Information Engineering and Mathematical Models, University of Palermo)

  • Sai T. Chu

    (City University of Hong Kong)

  • Brent E. Little

    (State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science)

  • David J. Moss

    (Centre for Micro Photonics, Swinburne University of Technology)

  • Lucia Caspani

    (Institute of Photonics, University of Strathclyde
    Institute of Photonics and Quantum Sciences, Heriot-Watt University)

  • José Azaña

    (Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet)

  • Roberto Morandotti

    (Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
    National Research University of Information Technologies, Mechanics and Optics)

Abstract

The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and practical platform for quantum information processing.

Suggested Citation

  • Michael Kues & Christian Reimer & Piotr Roztocki & Luis Romero Cortés & Stefania Sciara & Benjamin Wetzel & Yanbing Zhang & Alfonso Cino & Sai T. Chu & Brent E. Little & David J. Moss & Lucia Caspani , 2017. "On-chip generation of high-dimensional entangled quantum states and their coherent control," Nature, Nature, vol. 546(7660), pages 622-626, June.
  • Handle: RePEc:nat:nature:v:546:y:2017:i:7660:d:10.1038_nature22986
    DOI: 10.1038/nature22986
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature22986
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature22986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bereneice Sephton & Adam Vallés & Isaac Nape & Mitchell A. Cox & Fabian Steinlechner & Thomas Konrad & Juan P. Torres & Filippus S. Roux & Andrew Forbes, 2023. "Quantum transport of high-dimensional spatial information with a nonlinear detector," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Hsuan-Hao Lu & Karthik V. Myilswamy & Ryan S. Bennink & Suparna Seshadri & Mohammed S. Alshaykh & Junqiu Liu & Tobias J. Kippenberg & Daniel E. Leaird & Andrew M. Weiner & Joseph M. Lukens, 2022. "Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Gheorghe Taran & Eufemio Moreno-Pineda & Michael Schulze & Edgar Bonet & Mario Ruben & Wolfgang Wernsdorfer, 2023. "Direct determination of high-order transverse ligand field parameters via µSQUID-EPR in a Et4N[160GdPc2] SMM," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Saket Kaushal & A. Aadhi & Anthony Roberge & Roberto Morandotti & Raman Kashyap & José Azaña, 2023. "All-fibre phase filters with 1-GHz resolution for high-speed passive optical logic processing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Marco Clementi & Federico Andrea Sabattoli & Massimo Borghi & Linda Gianini & Noemi Tagliavacche & Houssein El Dirani & Laurene Youssef & Nicola Bergamasco & Camille Petit-Etienne & Erwine Pargon & J., 2023. "Programmable frequency-bin quantum states in a nano-engineered silicon device," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Mujtaba Zahidy & Domenico Ribezzo & Claudia Lazzari & Ilaria Vagniluca & Nicola Biagi & Ronny Müller & Tommaso Occhipinti & Leif K. Oxenløwe & Michael Galili & Tetsuya Hayashi & Dajana Cassioli & Anto, 2024. "Practical high-dimensional quantum key distribution protocol over deployed multicore fiber," Nature Communications, Nature, vol. 15(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:546:y:2017:i:7660:d:10.1038_nature22986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.