IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v608y2022ip2s0378437122008718.html
   My bibliography  Save this article

A complementary resource relation of concurrence and roughness for a two-qubit state

Author

Listed:
  • Reis, Mauricio
  • Oliveira, Adelcio C.

Abstract

Quantum resources lie at the core of quantum computation as they are responsible for the computational advantage in many tasks. The complementary relations are a pathway to understanding how the physical quantities are related. This work presents a complementary relationship between the quantumness of a two qubits state and the degree of entanglement, respectively measured by roughness and concurrence. There is a finite R2 region that can be used to characterize the two qubits subspace. Heat maps for accumulation points over the surfaces of pure and non-pure randomly sampled states are presented, also an investigation of a decoherence process using a bath under zero and non-zero temperature is performed using the roughness versus concurrence parameter space.

Suggested Citation

  • Reis, Mauricio & Oliveira, Adelcio C., 2022. "A complementary resource relation of concurrence and roughness for a two-qubit state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
  • Handle: RePEc:eee:phsmap:v:608:y:2022:i:p2:s0378437122008718
    DOI: 10.1016/j.physa.2022.128313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008718
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabian Wolf & Chunyan Shi & Jan C. Heip & Manuel Gessner & Luca Pezzè & Augusto Smerzi & Marius Schulte & Klemens Hammerer & Piet O. Schmidt, 2019. "Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    3. Rossi, R. & Bosco de Magalhães, A.R. & Nemes, M.C., 2006. "Two cavity modes in a dissipative environment: Cross decay rates and robust states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 402-408.
    4. Oliveira, Adélcio C., 2014. "Classical limit of quantum mechanics induced by continuous measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 655-668.
    5. Juan Yin & Yu-Huai Li & Sheng-Kai Liao & Meng Yang & Yuan Cao & Liang Zhang & Ji-Gang Ren & Wen-Qi Cai & Wei-Yue Liu & Shuang-Lin Li & Rong Shu & Yong-Mei Huang & Lei Deng & Li Li & Qiang Zhang & Nai-, 2020. "Entanglement-based secure quantum cryptography over 1,120 kilometres," Nature, Nature, vol. 582(7813), pages 501-505, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Changchun & Chen, Lin & Zhao, Li-Jun, 2023. "Coherence and entanglement in Grover and Harrow–Hassidim–Lloyd algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    3. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    4. Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
    5. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.
    6. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. T. Brown & E. Doucet & D. Ristè & G. Ribeill & K. Cicak & J. Aumentado & R. Simmonds & L. Govia & A. Kamal & L. Ranzani, 2022. "Trade off-free entanglement stabilization in a superconducting qutrit-qubit system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Daniel Christian Lawo & Rana Abu Bakar & Abraham Cano Aguilera & Filippo Cugini & José Luis Imaña & Idelfonso Tafur Monroy & Juan Jose Vegas Olmos, 2024. "Wireless and Fiber-Based Post-Quantum-Cryptography-Secured IPsec Tunnel," Future Internet, MDPI, vol. 16(8), pages 1-22, August.
    10. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Ryan Snodgrass & Vincent Kotsubo & Scott Backhaus & Joel Ullom, 2024. "Dynamic acoustic optimization of pulse tube refrigerators for rapid cooldown," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    13. Piotr Tomasz Makowski & Yuya Kajikawa, 2021. "Automation-driven innovation management? Toward Innovation-Automation-Strategy cycle," Papers 2103.02395, arXiv.org.
    14. Yun-Hao Shi & Zheng-Hang Sun & Yong-Yi Wang & Zheng-An Wang & Yu-Ran Zhang & Wei-Guo Ma & Hao-Tian Liu & Kui Zhao & Jia-Cheng Song & Gui-Han Liang & Zheng-Yang Mei & Jia-Chi Zhang & Hao Li & Chi-Tong , 2024. "Probing spin hydrodynamics on a superconducting quantum simulator," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Shuai-Peng Wang & Alessandro Ridolfo & Tiefu Li & Salvatore Savasta & Franco Nori & Y. Nakamura & J. Q. You, 2023. "Probing the symmetry breaking of a light–matter system by an ancillary qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    17. Francesco Bova & Avi Goldfarb & Roger G. Melko, 2023. "Quantum Economic Advantage," Management Science, INFORMS, vol. 69(2), pages 1116-1126, February.
    18. Beatrice Polacchi & Dominik Leichtle & Leonardo Limongi & Gonzalo Carvacho & Giorgio Milani & Nicolò Spagnolo & Marc Kaplan & Fabio Sciarrino & Elham Kashefi, 2023. "Multi-client distributed blind quantum computation with the Qline architecture," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Peter Schiansky & Julia Kalb & Esther Sztatecsny & Marie-Christine Roehsner & Tobias Guggemos & Alessandro Trenti & Mathieu Bozzio & Philip Walther, 2023. "Demonstration of quantum-digital payments," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Hanling Lin & Xiaofeng Wang & Min Li, 2023. "Post-Quantum Signature Scheme Based on the Root Extraction Problem over Mihailova Subgroups of Braid Groups," Mathematics, MDPI, vol. 11(13), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:608:y:2022:i:p2:s0378437122008718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.