IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36852-y.html
   My bibliography  Save this article

The critical role of ultra-low-energy vibrations in the relaxation dynamics of molecular qubits

Author

Listed:
  • E. Garlatti

    (Università di Parma and UdR Parma, INSTM
    INFN, Sezione di Milano-Bicocca, gruppo collegato di Parma)

  • A. Albino

    (Università Degli Studi di Firenze and UdR Firenze, INSTM)

  • S. Chicco

    (Università di Parma and UdR Parma, INSTM)

  • V. H. A. Nguyen

    (Trinity College)

  • F. Santanni

    (Università Degli Studi di Firenze and UdR Firenze, INSTM)

  • L. Paolasini

    (ESRF - The European Synchrotron Radiation Facility)

  • C. Mazzoli

    (Brookhaven National Laboratory)

  • R. Caciuffo

    (INFN, Sezione di Genova)

  • F. Totti

    (Università Degli Studi di Firenze and UdR Firenze, INSTM)

  • P. Santini

    (Università di Parma and UdR Parma, INSTM
    INFN, Sezione di Milano-Bicocca, gruppo collegato di Parma)

  • R. Sessoli

    (Università Degli Studi di Firenze and UdR Firenze, INSTM)

  • A. Lunghi

    (Trinity College)

  • S. Carretta

    (Università di Parma and UdR Parma, INSTM
    INFN, Sezione di Milano-Bicocca, gruppo collegato di Parma)

Abstract

Improving the performance of molecular qubits is a fundamental milestone towards unleashing the power of molecular magnetism in the second quantum revolution. Taming spin relaxation and decoherence due to vibrations is crucial to reach this milestone, but this is hindered by our lack of understanding on the nature of vibrations and their coupling to spins. Here we propose a synergistic approach to study a prototypical molecular qubit. It combines inelastic X-ray scattering to measure phonon dispersions along the main symmetry directions of the crystal and spin dynamics simulations based on DFT. We show that the canonical Debye picture of lattice dynamics breaks down and that intra-molecular vibrations with very-low energies of 1-2 meV are largely responsible for spin relaxation up to ambient temperature. We identify the origin of these modes, thus providing a rationale for improving spin coherence. The power and flexibility of our approach open new avenues for the investigation of magnetic molecules with the potential of removing roadblocks toward their use in quantum devices.

Suggested Citation

  • E. Garlatti & A. Albino & S. Chicco & V. H. A. Nguyen & F. Santanni & L. Paolasini & C. Mazzoli & R. Caciuffo & F. Totti & P. Santini & R. Sessoli & A. Lunghi & S. Carretta, 2023. "The critical role of ultra-low-energy vibrations in the relaxation dynamics of molecular qubits," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36852-y
    DOI: 10.1038/s41467-023-36852-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36852-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36852-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. Garlatti & T. Guidi & S. Ansbro & P. Santini & G. Amoretti & J. Ollivier & H. Mutka & G. Timco & I. J. Vitorica-Yrezabal & G. F. S. Whitehead & R. E. P. Winpenny & S. Carretta, 2017. "Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    2. N. Bar-Gill & L.M. Pham & A. Jarmola & D. Budker & R.L. Walsworth, 2013. "Solid-state electronic spin coherence time approaching one second," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    3. E. Garlatti & L. Tesi & A. Lunghi & M. Atzori & D. J. Voneshen & P. Santini & S. Sanvito & T. Guidi & R. Sessoli & S. Carretta, 2020. "Unveiling phonons in a molecular qubit with four-dimensional inelastic neutron scattering and density functional theory," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Duncan H. Moseley & Shelby E. Stavretis & Komalavalli Thirunavukkuarasu & Mykhaylo Ozerov & Yongqiang Cheng & Luke L. Daemen & Jonathan Ludwig & Zhengguang Lu & Dmitry Smirnov & Craig M. Brown & Anup , 2018. "Spin–phonon couplings in transition metal complexes with slow magnetic relaxation," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    5. Jesús Ferrando-Soria & Eufemio Moreno Pineda & Alessandro Chiesa & Antonio Fernandez & Samantha A. Magee & Stefano Carretta & Paolo Santini & Iñigo J. Vitorica-Yrezabal & Floriana Tuna & Grigore A. Ti, 2016. "A modular design of molecular qubits to implement universal quantum gates," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jia-Shiang Chen & Kasidet Jing Trerayapiwat & Lei Sun & Matthew D. Krzyaniak & Michael R. Wasielewski & Tijana Rajh & Sahar Sharifzadeh & Xuedan Ma, 2023. "Long-lived electronic spin qubits in single-walled carbon nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Chen Zhang & Durga Dasari & Matthias Widmann & Jonas Meinel & Vadim Vorobyov & Polina Kapitanova & Elizaveta Nenasheva & Kazuo Nakamura & Hitoshi Sumiya & Shinobu Onoda & Junichi Isoya & Jörg Wrachtru, 2022. "Quantum-assisted distortion-free audio signal sensing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Tolulope Michael Ajayi & Vijay Singh & Kyaw Zin Latt & Sanjoy Sarkar & Xinyue Cheng & Sineth Premarathna & Naveen K. Dandu & Shaoze Wang & Fahimeh Movahedifar & Sarah Wieghold & Nozomi Shirato & Volke, 2022. "Atomically precise control of rotational dynamics in charged rare-earth complexes on a metal surface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Gheorghe Taran & Eufemio Moreno-Pineda & Michael Schulze & Edgar Bonet & Mario Ruben & Wolfgang Wernsdorfer, 2023. "Direct determination of high-order transverse ligand field parameters via µSQUID-EPR in a Et4N[160GdPc2] SMM," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Roberto Rizzato & Martin Schalk & Stephan Mohr & Jens C. Hermann & Joachim P. Leibold & Fleming Bruckmaier & Giovanna Salvitti & Chenjiang Qian & Peirui Ji & Georgy V. Astakhov & Ulrich Kentsch & Manf, 2023. "Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Hodaka Kurokawa & Keidai Wakamatsu & Shintaro Nakazato & Toshiharu Makino & Hiromitsu Kato & Yuhei Sekiguchi & Hideo Kosaka, 2024. "Coherent electric field control of orbital state of a neutral nitrogen-vacancy center," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36852-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.