IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38492-8.html
   My bibliography  Save this article

An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode

Author

Listed:
  • Shengmei Chen

    (City University of Hong Kong 83 Tat Chee Avenue)

  • Yiran Ying

    (The Hong Kong Polytechnic University, Hung Hom)

  • Longtao Ma

    (City University of Hong Kong 83 Tat Chee Avenue)

  • Daming Zhu

    (Chinese Academy of Sciences)

  • Haitao Huang

    (The Hong Kong Polytechnic University, Hung Hom)

  • Li Song

    (University of Science and Technology of China)

  • Chunyi Zhi

    (City University of Hong Kong 83 Tat Chee Avenue
    City University of Hong Kong)

Abstract

One of the major obstacles hindering the application of zinc metal batteries is the contradictory demands from the Zn metal anode and cathodes. At the anode side, water induces serious corrosion and dendrite growth, remarkably suppressing the reversibility of Zn plating/stripping. At the cathode side, water is essential because many cathode materials require both H+ and Zn2+ insertion/extraction to achieve a high capacity and long lifespan. Herein, an asymmetric design of inorganic solid-state electrolyte combined with hydrogel electrolyte is presented to simultaneously meet the as-mentioned contrary requirements. The inorganic solid-state electrolyte is toward the Zn anode to realize a dendrite-free and corrosion-free highly reversible Zn plating/stripping, and the hydrogel electrolyte enables consequent H+ and Zn2+ insertion/extraction at the cathode side for high performance. Therefore, there is no hydrogen and dendrite growth detected in cells with a super high-areal-capacity up to 10 mAh·cm−2 (Zn//Zn), ~5.5 mAh·cm−2 (Zn//MnO2) and ~7.2 mAh·cm−2 (Zn//V2O5). These Zn//MnO2 and Zn//V2O5 batteries show remarkable cycling stability over 1000 cycles with 92.4% and over 400 cycles with 90.5% initial capacity retained, respectively.

Suggested Citation

  • Shengmei Chen & Yiran Ying & Longtao Ma & Daming Zhu & Haitao Huang & Li Song & Chunyi Zhi, 2023. "An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38492-8
    DOI: 10.1038/s41467-023-38492-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38492-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38492-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lin Ma & Marshall A. Schroeder & Oleg Borodin & Travis P. Pollard & Michael S. Ding & Chunsheng Wang & Kang Xu, 2020. "Realizing high zinc reversibility in rechargeable batteries," Nature Energy, Nature, vol. 5(10), pages 743-749, October.
    2. Dipan Kundu & Brian D. Adams & Victor Duffort & Shahrzad Hosseini Vajargah & Linda F. Nazar, 2016. "A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    3. Huilin Pan & Yuyan Shao & Pengfei Yan & Yingwen Cheng & Kee Sung Han & Zimin Nie & Chongmin Wang & Jihui Yang & Xiaolin Li & Priyanka Bhattacharya & Karl T. Mueller & Jun Liu, 2016. "Reversible aqueous zinc/manganese oxide energy storage from conversion reactions," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    4. Ning Zhang & Fangyi Cheng & Junxiang Liu & Liubin Wang & Xinghui Long & Xiaosong Liu & Fujun Li & Jun Chen, 2017. "Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    5. Sheng-Bo Wang & Qing Ran & Rui-Qi Yao & Hang Shi & Zi Wen & Ming Zhao & Xing-You Lang & Qing Jiang, 2020. "Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Zhiyang Zheng & Xiongwei Zhong & Qi Zhang & Mengtian Zhang & Lixin Dai & Xiao Xiao & Jiahe Xu & Miaolun Jiao & Boran Wang & Hong Li & Yeyang Jia & Rui Mao & Guangmin Zhou, 2024. "An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Alessandro Innocenti & Dominic Bresser & Jürgen Garche & Stefano Passerini, 2024. "A critical discussion of the current availability of lithium and zinc for use in batteries," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    4. Yunxiang Zhao & Shan Guo & Manjing Chen & Bingan Lu & Xiaotan Zhang & Shuquan Liang & Jiang Zhou, 2023. "Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Yu Wang & Tairan Wang & Shuyu Bu & Jiaxiong Zhu & Yanbo Wang & Rong Zhang & Hu Hong & Wenjun Zhang & Jun Fan & Chunyi Zhi, 2023. "Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Yuwei Zhao & Yue Lu & Huiping Li & Yongbin Zhu & You Meng & Na Li & Donghong Wang & Feng Jiang & Funian Mo & Changbai Long & Ying Guo & Xinliang Li & Zhaodong Huang & Qing Li & Johnny C. Ho & Jun Fan , 2022. "Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Huajun Tian & Guangxia Feng & Qi Wang & Zhao Li & Wei Zhang & Marcos Lucero & Zhenxing Feng & Zi-Le Wang & Yuning Zhang & Cheng Zhen & Meng Gu & Xiaonan Shan & Yang Yang, 2022. "Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Kefu Zhu & Shiqiang Wei & Hongwei Shou & Feiran Shen & Shuangming Chen & Pengjun Zhang & Changda Wang & Yuyang Cao & Xin Guo & Mi Luo & Hongjun Zhang & Bangjiao Ye & Xiaojun Wu & Lunhua He & Li Song, 2021. "Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Zedong Zhao & Rong Wang & Chengxin Peng & Wuji Chen & Tianqi Wu & Bo Hu & Weijun Weng & Ying Yao & Jiaxi Zeng & Zhihong Chen & Peiying Liu & Yicheng Liu & Guisheng Li & Jia Guo & Hongbin Lu & Zaiping , 2021. "Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Qingshun Nian & Xuan Luo & Digen Ruan & Yecheng Li & Bing-Qing Xiong & Zhuangzhuang Cui & Zihong Wang & Qi Dong & Jiajia Fan & Jinyu Jiang & Jun Ma & Zhihao Ma & Dazhuang Wang & Xiaodi Ren, 2024. "Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Zhiwei Li & Yinghong Xu & Langyuan Wu & Jiaxin Cui & Hui Dou & Xiaogang Zhang, 2023. "Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Chen, Binbin & Xuan, Jin & Offer, Gregory James & Wang, Huizhi, 2020. "Multiplex measurement of diffusion in zinc battery electrolytes from microfluidics using Raman microspectroscopy," Applied Energy, Elsevier, vol. 279(C).
    14. Amiri, Ahmad & Swart, Edward Ned & Polycarpou, Andreas A., 2021. "Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Ruirui Zhao & Haifeng Wang & Haoran Du & Ying Yang & Zhonghui Gao & Long Qie & Yunhui Huang, 2022. "Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    17. Shuo Jin & Jiefu Yin & Xiaosi Gao & Arpita Sharma & Pengyu Chen & Shifeng Hong & Qing Zhao & Jingxu Zheng & Yue Deng & Yong Lak Joo & Lynden A. Archer, 2022. "Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Xinhua Zheng & Zaichun Liu & Jifei Sun & Ruihao Luo & Kui Xu & Mingyu Si & Ju Kang & Yuan Yuan & Shuang Liu & Touqeer Ahmad & Taoli Jiang & Na Chen & Mingming Wang & Yan Xu & Mingyan Chuai & Zhengxin , 2023. "Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Priya Lakshmanan & Subadevi Rengapillai & Sivakumar Marimuthu & Suryanarayanan Vembu, 2022. "Turning Trash to Treasure: Reusable Glucose Kit as a Cell Using ZnO Derived from Metal Organic Framework (MOF) Electrode for Redox Flow Battery," Energies, MDPI, vol. 15(20), pages 1-15, October.
    20. Qing Li & Ao Chen & Donghong Wang & Yuwei Zhao & Xiaoqi Wang & Xu Jin & Bo Xiong & Chunyi Zhi, 2022. "Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38492-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.