IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37524-7.html
   My bibliography  Save this article

Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells

Author

Listed:
  • Yu Wang

    (Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE)
    City University of Hong Kong)

  • Tairan Wang

    (City University of Hong Kong)

  • Shuyu Bu

    (City University of Hong Kong)

  • Jiaxiong Zhu

    (City University of Hong Kong)

  • Yanbo Wang

    (City University of Hong Kong)

  • Rong Zhang

    (City University of Hong Kong)

  • Hu Hong

    (City University of Hong Kong)

  • Wenjun Zhang

    (City University of Hong Kong)

  • Jun Fan

    (City University of Hong Kong)

  • Chunyi Zhi

    (Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE)
    City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong)

Abstract

Aqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal battery pouch cells by engineering the electrolyte solution. After identifying the proton reduction as the primary source of H2 evolution during Zn metal electrodeposition, we design an electrolyte solution containing reverse micelle structures where sulfolane molecules constrain water in nanodomains to hinder proton reduction. Furthermore, we develop and validate an electrochemical testing protocol to comprehensively evaluate the cell’s coulombic efficiency and zinc metal electrode cycle life. Finally, using the reverse micelle electrolyte, we assemble and test a practical ampere-hour Zn||Zn0.25V2O5•nH2O multi-layer pouch cell capable of delivering an initial energy density of 70 Wh L−1 (based on the volume of the cell components), capacity retention of about 80% after 390 cycles at 56 mA g−1cathode and ~25 °C and prolonged cycling for 5 months at 56 mA g−1cathode and ~25 °C.

Suggested Citation

  • Yu Wang & Tairan Wang & Shuyu Bu & Jiaxiong Zhu & Yanbo Wang & Rong Zhang & Hu Hong & Wenjun Zhang & Jun Fan & Chunyi Zhi, 2023. "Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37524-7
    DOI: 10.1038/s41467-023-37524-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37524-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37524-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dipan Kundu & Brian D. Adams & Victor Duffort & Shahrzad Hosseini Vajargah & Linda F. Nazar, 2016. "A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    2. Chengcheng Fang & Jinxing Li & Minghao Zhang & Yihui Zhang & Fan Yang & Jungwoo Z. Lee & Min-Han Lee & Judith Alvarado & Marshall A. Schroeder & Yangyuchen Yang & Bingyu Lu & Nicholas Williams & Migue, 2019. "Quantifying inactive lithium in lithium metal batteries," Nature, Nature, vol. 572(7770), pages 511-515, August.
    3. Ning Zhang & Fangyi Cheng & Junxiang Liu & Liubin Wang & Xinghui Long & Xiaosong Liu & Fujun Li & Jun Chen, 2017. "Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    4. Yangmoon Kim & Youngbin Park & Minkwan Kim & Jimin Lee & Ki Jae Kim & Jang Wook Choi, 2022. "Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Fang Liu & Rong Xu & Yecun Wu & David Thomas Boyle & Ankun Yang & Jinwei Xu & Yangying Zhu & Yusheng Ye & Zhiao Yu & Zewen Zhang & Xin Xiao & Wenxiao Huang & Hansen Wang & Hao Chen & Yi Cui, 2021. "Dynamic spatial progression of isolated lithium during battery operations," Nature, Nature, vol. 600(7890), pages 659-663, December.
    6. Huayu Qiu & Xiaofan Du & Jingwen Zhao & Yantao Wang & Jiangwei Ju & Zheng Chen & Zhenglin Hu & Dongpeng Yan & Xinhong Zhou & Guanglei Cui, 2019. "Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingbo Yao & Jiahe Liu & Feifan Zhang & Bo Wen & Xiaowei Chi & Yu Liu, 2024. "Reconstruction of zinc-metal battery solvation structures operating from −50 ~ +100 °C," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Minghao Zhang & Chenxi Sun & Guanhong Chen & Yuanhong Kang & Zeheng Lv & Jin Yang & Siyang Li & Pengxiang Lin & Rong Tang & Zhipeng Wen & Cheng Chao Li & Jinbao Zhao & Yang Yang, 2024. "Synergetic bifunctional Cu-In alloy interface enables Ah-level Zn metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yahan Meng & Mingming Wang & Jiazhi Wang & Xuehai Huang & Xiang Zhou & Muhammad Sajid & Zehui Xie & Ruihao Luo & Zhengxin Zhu & Zuodong Zhang & Nawab Ali Khan & Yu Wang & Zhenyu Li & Wei Chen, 2024. "Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingshun Nian & Xuan Luo & Digen Ruan & Yecheng Li & Bing-Qing Xiong & Zhuangzhuang Cui & Zihong Wang & Qi Dong & Jiajia Fan & Jinyu Jiang & Jun Ma & Zhihao Ma & Dazhuang Wang & Xiaodi Ren, 2024. "Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Shengmei Chen & Yiran Ying & Longtao Ma & Daming Zhu & Haitao Huang & Li Song & Chunyi Zhi, 2023. "An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Xin Shi & Jinhao Xie & Jin Wang & Shilei Xie & Zujin Yang & Xihong Lu, 2024. "A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Qing Li & Ao Chen & Donghong Wang & Yuwei Zhao & Xiaoqi Wang & Xu Jin & Bo Xiong & Chunyi Zhi, 2022. "Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Song Chen & Deluo Ji & Qianwu Chen & Jizhen Ma & Shaoqi Hou & Jintao Zhang, 2023. "Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Songshan Bi & Shuai Wang & Fang Yue & Zhiwei Tie & Zhiqiang Niu, 2021. "A rechargeable aqueous manganese-ion battery based on intercalation chemistry," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Feifei Wang & Jipeng Zhang & Haotian Lu & Hanbing Zhu & Zihui Chen & Lu Wang & Jinyang Yu & Conghui You & Wenhao Li & Jianwei Song & Zhe Weng & Chunpeng Yang & Quan-Hong Yang, 2023. "Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    10. Kai Yang & Hongchang Cai & Suran Li & Yu Wang & Xue Zhang & Zhenxuan Wu & Yilin Lai & Minella Bezha & Klara Bezha & Naoto Nagaoka & Yuejiu Zheng & Xuning Feng, 2024. "Research on Quantitative Diagnosis of Dendrites Based on Titration Gas Chromatography Technology," Energies, MDPI, vol. 17(10), pages 1-19, May.
    11. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Chao Chen & Jiaming Zhang & Benrui Hu & Qianwen Liang & Xunhui Xiong, 2023. "Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Zhiwei Li & Yinghong Xu & Langyuan Wu & Jiaxin Cui & Hui Dou & Xiaogang Zhang, 2023. "Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Alessandro Innocenti & Dominic Bresser & Jürgen Garche & Stefano Passerini, 2024. "A critical discussion of the current availability of lithium and zinc for use in batteries," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    16. Chen, Binbin & Xuan, Jin & Offer, Gregory James & Wang, Huizhi, 2020. "Multiplex measurement of diffusion in zinc battery electrolytes from microfluidics using Raman microspectroscopy," Applied Energy, Elsevier, vol. 279(C).
    17. Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Jinrong Luo & Liang Xu & Yinan Yang & Song Huang & Yijing Zhou & Yanyan Shao & Tianheng Wang & Jiaming Tian & Shaohua Guo & Jianqing Zhao & Xiaoxu Zhao & Tao Cheng & Yuanlong Shao & Jin Zhang, 2024. "Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Ruirui Zhao & Haifeng Wang & Haoran Du & Ying Yang & Zhonghui Gao & Long Qie & Yunhui Huang, 2022. "Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37524-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.