IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48368-0.html
   My bibliography  Save this article

A critical discussion of the current availability of lithium and zinc for use in batteries

Author

Listed:
  • Alessandro Innocenti

    (Helmholtzstrasse 11
    Karlsruhe Institute of Technology (KIT)
    Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg)

  • Dominic Bresser

    (Helmholtzstrasse 11
    Karlsruhe Institute of Technology (KIT))

  • Jürgen Garche

    (University of Ulm, Oberberghof 7)

  • Stefano Passerini

    (Helmholtzstrasse 11
    Karlsruhe Institute of Technology (KIT)
    Sapienza University of Rome, Piazzale A. Moro 5)

Abstract

In the literature on zinc-based batteries, it is often highlighted that zinc offers significant advantages over lithium due to its abundance, affordability, and accessibility. Additionally, aqueous rechargeable zinc batteries are promoted as a sustainable and cost-effective alternative to lithium-ion batteries, especially for renewable energy storage. The aim of this Comment is to provide a perspective on these statements, elucidating their foundations and implications and giving a quick but comprehensive background to authors and readers that deal with this topic, focusing specifically on batteries with zinc ions shuttling reversibly between the metallic negative electrode and the insertion-type positive electrode.

Suggested Citation

  • Alessandro Innocenti & Dominic Bresser & Jürgen Garche & Stefano Passerini, 2024. "A critical discussion of the current availability of lithium and zinc for use in batteries," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48368-0
    DOI: 10.1038/s41467-024-48368-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48368-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48368-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ning Zhang & Fangyi Cheng & Junxiang Liu & Liubin Wang & Xinghui Long & Xiaosong Liu & Fujun Li & Jun Chen, 2017. "Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Peter Greim & A. A. Solomon & Christian Breyer, 2020. "Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Huilin Pan & Yuyan Shao & Pengfei Yan & Yingwen Cheng & Kee Sung Han & Zimin Nie & Chongmin Wang & Jihui Yang & Xiaolin Li & Priyanka Bhattacharya & Karl T. Mueller & Jun Liu, 2016. "Reversible aqueous zinc/manganese oxide energy storage from conversion reactions," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    4. Kang Xu & Chunsheng Wang, 2016. "Batteries: Widening voltage windows," Nature Energy, Nature, vol. 1(10), pages 1-2, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Zhiyang Zheng & Xiongwei Zhong & Qi Zhang & Mengtian Zhang & Lixin Dai & Xiao Xiao & Jiahe Xu & Miaolun Jiao & Boran Wang & Hong Li & Yeyang Jia & Rui Mao & Guangmin Zhou, 2024. "An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Shengmei Chen & Yiran Ying & Longtao Ma & Daming Zhu & Haitao Huang & Li Song & Chunyi Zhi, 2023. "An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    7. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    8. Ram, Manish & Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050," Energy, Elsevier, vol. 238(PA).
    9. Minsung Baek & Jinyoung Kim & Jaegyu Jin & Jang Wook Choi, 2021. "Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. John D. Graham & John A. Rupp & Eva Brungard, 2021. "Lithium in the Green Energy Transition: The Quest for Both Sustainability and Security," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    11. Khurshid, Adnan & Chen, Yufeng & Rauf, Abdur & Khan, Khalid, 2023. "Critical metals in uncertainty: How Russia-Ukraine conflict drives their prices?," Resources Policy, Elsevier, vol. 85(PB).
    12. Wang, Xiao-Qing & Qin, Meng & Moldovan, Nicoleta-Claudia & Su, Chi-Wei, 2023. "Bubble behaviors in lithium price and the contagion effect: An industry chain perspective," Resources Policy, Elsevier, vol. 83(C).
    13. Junbo Zhang & Haikuo Zhang & Suting Weng & Ruhong Li & Di Lu & Tao Deng & Shuoqing Zhang & Ling Lv & Jiacheng Qi & Xuezhang Xiao & Liwu Fan & Shujiang Geng & Fuhui Wang & Lixin Chen & Malachi Noked & , 2023. "Multifunctional solvent molecule design enables high-voltage Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Rongyu Deng & Zhenjiang He & Fulu Chu & Jie Lei & Yi Cheng & You Zhou & Feixiang Wu, 2023. "An aqueous electrolyte densified by perovskite SrTiO3 enabling high-voltage zinc-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Nowak, Mikołaj & Zając, Wojciech & Molenda, Janina, 2022. "Environmentally friendly, inexpensive iron-titanium tunneled oxide anodes for Na-ion batteries," Energy, Elsevier, vol. 239(PE).
    16. Wenjiao Ma & Tingting Liu & Chen Xu & Chengjun Lei & Pengjie Jiang & Xin He & Xiao Liang, 2023. "A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Huajun Tian & Guangxia Feng & Qi Wang & Zhao Li & Wei Zhang & Marcos Lucero & Zhenxing Feng & Zi-Le Wang & Yuning Zhang & Cheng Zhen & Meng Gu & Xiaonan Shan & Yang Yang, 2022. "Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Quanquan Guo & Wei Li & Xiaodong Li & Jiaxu Zhang & Davood Sabaghi & Jianjun Zhang & Bowen Zhang & Dongqi Li & Jingwei Du & Xingyuan Chu & Sein Chung & Kilwon Cho & Nguyen Ngan Nguyen & Zhongquan Liao, 2024. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Bomian Zhang & Jinghui Chen & Weiyi Sun & Yubo Shao & Lei Zhang & Kangning Zhao, 2022. "Challenges and Perspectives for Doping Strategy for Manganese-Based Zinc-ion Battery Cathode," Energies, MDPI, vol. 15(13), pages 1-20, June.
    20. Jhuma Sadhukhan, 2022. "Net-Zero Action Recommendations for Scope 3 Emission Mitigation Using Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-20, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48368-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.