IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48368-0.html
   My bibliography  Save this article

A critical discussion of the current availability of lithium and zinc for use in batteries

Author

Listed:
  • Alessandro Innocenti

    (Helmholtzstrasse 11
    Karlsruhe Institute of Technology (KIT)
    Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg)

  • Dominic Bresser

    (Helmholtzstrasse 11
    Karlsruhe Institute of Technology (KIT))

  • Jürgen Garche

    (University of Ulm, Oberberghof 7)

  • Stefano Passerini

    (Helmholtzstrasse 11
    Karlsruhe Institute of Technology (KIT)
    Sapienza University of Rome, Piazzale A. Moro 5)

Abstract

In the literature on zinc-based batteries, it is often highlighted that zinc offers significant advantages over lithium due to its abundance, affordability, and accessibility. Additionally, aqueous rechargeable zinc batteries are promoted as a sustainable and cost-effective alternative to lithium-ion batteries, especially for renewable energy storage. The aim of this Comment is to provide a perspective on these statements, elucidating their foundations and implications and giving a quick but comprehensive background to authors and readers that deal with this topic, focusing specifically on batteries with zinc ions shuttling reversibly between the metallic negative electrode and the insertion-type positive electrode.

Suggested Citation

  • Alessandro Innocenti & Dominic Bresser & Jürgen Garche & Stefano Passerini, 2024. "A critical discussion of the current availability of lithium and zinc for use in batteries," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48368-0
    DOI: 10.1038/s41467-024-48368-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48368-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48368-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huilin Pan & Yuyan Shao & Pengfei Yan & Yingwen Cheng & Kee Sung Han & Zimin Nie & Chongmin Wang & Jihui Yang & Xiaolin Li & Priyanka Bhattacharya & Karl T. Mueller & Jun Liu, 2016. "Reversible aqueous zinc/manganese oxide energy storage from conversion reactions," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    2. Ning Zhang & Fangyi Cheng & Junxiang Liu & Liubin Wang & Xinghui Long & Xiaosong Liu & Fujun Li & Jun Chen, 2017. "Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Kang Xu & Chunsheng Wang, 2016. "Batteries: Widening voltage windows," Nature Energy, Nature, vol. 1(10), pages 1-2, October.
    4. Peter Greim & A. A. Solomon & Christian Breyer, 2020. "Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Shengmei Chen & Yiran Ying & Longtao Ma & Daming Zhu & Haitao Huang & Li Song & Chunyi Zhi, 2023. "An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zhiyang Zheng & Xiongwei Zhong & Qi Zhang & Mengtian Zhang & Lixin Dai & Xiao Xiao & Jiahe Xu & Miaolun Jiao & Boran Wang & Hong Li & Yeyang Jia & Rui Mao & Guangmin Zhou, 2024. "An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    6. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Zhou, Na & Su, Hui & Wu, Qiaosheng & Hu, Shougeng & Xu, Deyi & Yang, Danhui & Cheng, Jinhua, 2022. "China's lithium supply chain: Security dynamics and policy countermeasures," Resources Policy, Elsevier, vol. 78(C).
    9. Qingshun Nian & Xuan Luo & Digen Ruan & Yecheng Li & Bing-Qing Xiong & Zhuangzhuang Cui & Zihong Wang & Qi Dong & Jiajia Fan & Jinyu Jiang & Jun Ma & Zhihao Ma & Dazhuang Wang & Xiaodi Ren, 2024. "Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    11. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    12. Iulia Dolganova & Vanessa Bach & Anne Rödl & Martin Kaltschmitt & Matthias Finkbeiner, 2022. "Assessment of Critical Resource Use in Aircraft Manufacturing," Circular Economy and Sustainability, Springer, vol. 2(3), pages 1193-1212, September.
    13. Huang, Jianbai & Dong, Xuesong & Chen, Jinyu & Zeng, Anqi, 2023. "The slow-release effect of recycling on rapid demand growth of critical metals from EV batteries up to 2050: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    14. Amiri, Ahmad & Swart, Edward Ned & Polycarpou, Andreas A., 2021. "Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Guo, Jianxin & Zhu, Kaiwei & Cheng, Yonglong, 2024. "Deployment of clean energy technologies towards carbon neutrality under resource constraints," Energy, Elsevier, vol. 295(C).
    16. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    17. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    18. Ram, Manish & Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050," Energy, Elsevier, vol. 238(PA).
    19. Shuo Jin & Jiefu Yin & Xiaosi Gao & Arpita Sharma & Pengyu Chen & Shifeng Hong & Qing Zhao & Jingxu Zheng & Yue Deng & Yong Lak Joo & Lynden A. Archer, 2022. "Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Yu Wang & Tairan Wang & Shuyu Bu & Jiaxiong Zhu & Yanbo Wang & Rong Zhang & Hu Hong & Wenjun Zhang & Jun Fan & Chunyi Zhi, 2023. "Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48368-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.