IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51975-6.html
   My bibliography  Save this article

Evolution of laser technology for automotive LiDAR, an industrial viewpoint

Author

Listed:
  • Dong Liang

    (Wujin District)

  • Cheng Zhang

    (Wujin District)

  • Pengfei Zhang

    (Wujin District)

  • Song Liu

    (Wujin District)

  • Huijie Li

    (Wujin District)

  • Shouzhu Niu

    (Wujin District)

  • Ryan Z. Rao

    (Wujin District)

  • Li Zhao

    (Wujin District)

  • Xiaochi Chen

    (Wujin District)

  • Hanxuan Li

    (Wujin District)

  • Yijie Huo

    (Wujin District)

Abstract

From an industry perspective, the past decade has been a whirlwind of innovation in automotive light detection and ranging (LiDAR). Numerous laser technologies and system solutions have been fiercely competing for market share. However, recent trends suggest a growing convergence on vertical-cavity surface-emitting laser (VCSEL) and antireflective VCSEL (AR-VCSEL) based solutions. This commentary, rooted in the practical realities of the industry, examines the historical trajectory of industrial laser technology for commercial automotive LiDAR. It specifically focuses on the recent applications of VCSEL/AR-VCSEL technologies and their future prospects.

Suggested Citation

  • Dong Liang & Cheng Zhang & Pengfei Zhang & Song Liu & Huijie Li & Shouzhu Niu & Ryan Z. Rao & Li Zhao & Xiaochi Chen & Hanxuan Li & Yijie Huo, 2024. "Evolution of laser technology for automotive LiDAR, an industrial viewpoint," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51975-6
    DOI: 10.1038/s41467-024-51975-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51975-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51975-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bingzhao Li & Qixuan Lin & Mo Li, 2023. "Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering," Nature, Nature, vol. 620(7973), pages 316-322, August.
    2. Xiaosheng Zhang & Kyungmok Kwon & Johannes Henriksson & Jianheng Luo & Ming C. Wu, 2022. "A large-scale microelectromechanical-systems-based silicon photonics LiDAR," Nature, Nature, vol. 603(7900), pages 253-258, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Hulin Yao & Pengcheng Zheng & Shibin Zhang & Chuanjie Hu & Xiaoli Fang & Liping Zhang & Dan Ling & Huanyang Chen & Xin Ou, 2024. "Twist piezoelectricity: giant electromechanical coupling in magic-angle twisted bilayer LiNbO3," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Bing Chang & Teng Tan & Junting Du & Xinyue He & Yupei Liang & Zihan Liu & Chun Wang & Handing Xia & Zhaohui Wu & Jindong Wang & Kenneth K. Y. Wong & Tao Zhu & Lingjiang Kong & Bowen Li & Yunjiang Rao, 2024. "Dispersive Fourier transform based dual-comb ranging," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Joel Siegel & Shinho Kim & Margaret Fortman & Chenghao Wan & Mikhail A. Kats & Philip W. C. Hon & Luke Sweatlock & Min Seok Jang & Victor Watson Brar, 2024. "Electrostatic steering of thermal emission with active metasurface control of delocalized modes," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Dawoon Jeong & Hansol Jang & Min Uk Jung & Taeho Jeong & Hyunsoo Kim & Sanghyeok Yang & Janghyeon Lee & Chang-Seok Kim, 2024. "Spatio-spectral 4D coherent ranging using a flutter-wavelength-swept laser," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Saeed Sharif Azadeh & Jason C. C. Mak & Hong Chen & Xianshu Luo & Fu-Der Chen & Hongyao Chua & Frank Weiss & Christopher Alexiev & Andrei Stalmashonak & Youngho Jung & John N. Straguzzi & Guo-Qiang Lo, 2023. "Microcantilever-integrated photonic circuits for broadband laser beam scanning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Daniel Pérez-López & Ana Gutierrez & David Sánchez & Aitor López-Hernández & Mikel Gutierrez & Erica Sánchez-Gomáriz & Juan Fernández & Alejandro Cruz & Alberto Quirós & Zhenyun Xie & Jesús Benitez & , 2024. "General-purpose programmable photonic processor for advanced radiofrequency applications," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Sudip Shekhar & Wim Bogaerts & Lukas Chrostowski & John E. Bowers & Michael Hochberg & Richard Soref & Bhavin J. Shastri, 2024. "Roadmapping the next generation of silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51975-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.