IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44628-7.html
   My bibliography  Save this article

Active mid-infrared ring resonators

Author

Listed:
  • Dmitry Kazakov

    (Harvard University)

  • Theodore P. Letsou

    (Harvard University
    Massachusetts Institute of Technology)

  • Maximilian Beiser

    (TU Wien)

  • Yiyang Zhi

    (Harvard University
    UC Berkeley)

  • Nikola Opačak

    (Harvard University
    TU Wien)

  • Marco Piccardo

    (Harvard University
    Universidade de Lisboa
    Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN))

  • Benedikt Schwarz

    (Harvard University
    TU Wien)

  • Federico Capasso

    (Harvard University)

Abstract

High-quality optical ring resonators can confine light in a small volume and store it for millions of roundtrips. They have enabled the dramatic size reduction from laboratory scale to chip level of optical filters, modulators, frequency converters, and frequency comb generators in the visible and the near-infrared. The mid-infrared spectral region (3−12 μm), as important as it is for molecular gas sensing and spectroscopy, lags behind in development of integrated photonic components. Here we demonstrate the integration of mid-infrared ring resonators and directional couplers, incorporating a quantum cascade active region in the waveguide core. It enables electrical control of the resonant frequency, its quality factor, the coupling regime and the coupling coefficient. We show that one device, depending on its operating point, can act as a tunable filter, a nonlinear frequency converter, or a frequency comb generator. These concepts extend to the integration of multiple active resonators and waveguides in arbitrary configurations, thus allowing the implementation of purpose-specific mid-infrared active photonic integrated circuits for spectroscopy, communication, and microwave generation.

Suggested Citation

  • Dmitry Kazakov & Theodore P. Letsou & Maximilian Beiser & Yiyang Zhi & Nikola Opačak & Marco Piccardo & Benedikt Schwarz & Federico Capasso, 2024. "Active mid-infrared ring resonators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44628-7
    DOI: 10.1038/s41467-023-44628-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44628-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44628-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 589(7840), pages 52-58, January.
    2. Cheng Wang & Mian Zhang & Xi Chen & Maxime Bertrand & Amirhassan Shams-Ansari & Sethumadhavan Chandrasekhar & Peter Winzer & Marko Lončar, 2018. "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Nature, vol. 562(7725), pages 101-104, October.
    3. Marco Piccardo & Benedikt Schwarz & Dmitry Kazakov & Maximilian Beiser & Nikola Opačak & Yongrui Wang & Shantanu Jha & Johannes Hillbrand & Michele Tamagnone & Wei Ting Chen & Alexander Y. Zhu & Loren, 2020. "Frequency combs induced by phase turbulence," Nature, Nature, vol. 582(7812), pages 360-364, June.
    4. Mingxiao Li & Lin Chang & Lue Wu & Jeremy Staffa & Jingwei Ling & Usman A. Javid & Shixin Xue & Yang He & Raymond Lopez-rios & Theodore J. Morin & Heming Wang & Boqiang Shen & Siwei Zeng & Lin Zhu & K, 2022. "Integrated Pockels laser," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Qianfan Xu & Bradley Schmidt & Sameer Pradhan & Michal Lipson, 2005. "Micrometre-scale silicon electro-optic modulator," Nature, Nature, vol. 435(7040), pages 325-327, May.
    6. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 591(7849), pages 13-13, March.
    7. Andreas Hugi & Gustavo Villares & Stéphane Blaser & H. C. Liu & Jérôme Faist, 2012. "Mid-infrared frequency comb based on a quantum cascade laser," Nature, Nature, vol. 492(7428), pages 229-233, December.
    8. Daryl T. Spencer & Tara Drake & Travis C. Briles & Jordan Stone & Laura C. Sinclair & Connor Fredrick & Qing Li & Daron Westly & B. Robert Ilic & Aaron Bluestone & Nicolas Volet & Tin Komljenovic & Li, 2018. "An optical-frequency synthesizer using integrated photonics," Nature, Nature, vol. 557(7703), pages 81-85, May.
    9. Minh A. Tran & Chong Zhang & Theodore J. Morin & Lin Chang & Sabyasachi Barik & Zhiquan Yuan & Woonghee Lee & Glenn Kim & Aditya Malik & Zeyu Zhang & Joel Guo & Heming Wang & Boqiang Shen & Lue Wu & K, 2022. "Extending the spectrum of fully integrated photonics to submicrometre wavelengths," Nature, Nature, vol. 610(7930), pages 54-60, October.
    10. Dingding Ren & Chao Dong & Sadhvikas J. Addamane & David Burghoff, 2022. "High-quality microresonators in the longwave infrared based on native germanium," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Shaofu Xu & Jing Wang & Sicheng Yi & Weiwen Zou, 2022. "High-order tensor flow processing using integrated photonic circuits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yang He & Raymond Lopez-Rios & Usman A. Javid & Jingwei Ling & Mingxiao Li & Shixin Xue & Kerry Vahala & Qiang Lin, 2023. "High-speed tunable microwave-rate soliton microcomb," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Guangwei Cong & Noritsugu Yamamoto & Takashi Inoue & Yuriko Maegami & Morifumi Ohno & Shota Kita & Shu Namiki & Koji Yamada, 2022. "On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Hubert S. Stokowski & Timothy P. McKenna & Taewon Park & Alexander Y. Hwang & Devin J. Dean & Oguz Tolga Celik & Vahid Ansari & Martin M. Fejer & Amir H. Safavi-Naeini, 2023. "Integrated quantum optical phase sensor in thin film lithium niobate," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Liuting Shan & Qizhen Chen & Rengjian Yu & Changsong Gao & Lujian Liu & Tailiang Guo & Huipeng Chen, 2023. "A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. G. Mourgias-Alexandris & M. Moralis-Pegios & A. Tsakyridis & S. Simos & G. Dabos & A. Totovic & N. Passalis & M. Kirtas & T. Rutirawut & F. Y. Gardes & A. Tefas & N. Pleros, 2022. "Noise-resilient and high-speed deep learning with coherent silicon photonics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Mikhail Churaev & Rui Ning Wang & Annina Riedhauser & Viacheslav Snigirev & Terence Blésin & Charles Möhl & Miles H. Anderson & Anat Siddharth & Youri Popoff & Ute Drechsler & Daniele Caimi & Simon Hö, 2023. "A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44628-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.