IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31507-w.html
   My bibliography  Save this article

Electrical resistance of the current collector controls lithium morphology

Author

Listed:
  • Solomon T. Oyakhire

    (Stanford University)

  • Wenbo Zhang

    (Stanford University)

  • Andrew Shin

    (Stanford University)

  • Rong Xu

    (Stanford University)

  • David T. Boyle

    (Stanford University)

  • Zhiao Yu

    (Stanford University)

  • Yusheng Ye

    (Stanford University)

  • Yufei Yang

    (Stanford University)

  • James A. Raiford

    (Stanford University)

  • William Huang

    (Stanford University)

  • Joel R. Schneider

    (Stanford University)

  • Yi Cui

    (Stanford University
    SLAC National Accelerator Laboratory)

  • Stacey F. Bent

    (Stanford University)

Abstract

The electrodeposition of low surface area lithium is critical to successful adoption of lithium metal batteries. Here, we discover the dependence of lithium metal morphology on electrical resistance of substrates, enabling us to design an alternative strategy for controlling lithium morphology and improving electrochemical performance. By modifying the current collector with atomic layer deposited conductive (ZnO, SnO2) and resistive (Al2O3) nanofilms, we show that conductive films promote the formation of high surface area lithium deposits, whereas highly resistive films promote the formation of lithium clusters of low surface area. We reveal an electrodeposition mechanism in which radial diffusion of electroactive species is promoted on resistive substrates, resulting in lateral growth of large (150 µm in diameter) planar lithium deposits. Using resistive substrates, similar lithium morphologies are formed in three distinct classes of electrolytes, resulting in up to ten-fold improvement in battery performance. Ultimately, we report anode-free pouch cells using the Al2O3-modified copper that maintain 60 % of their initial discharge capacity after 100 cycles, displaying the benefits of resistive substrates for controlling lithium electrodeposition.

Suggested Citation

  • Solomon T. Oyakhire & Wenbo Zhang & Andrew Shin & Rong Xu & David T. Boyle & Zhiao Yu & Yusheng Ye & Yufei Yang & James A. Raiford & William Huang & Joel R. Schneider & Yi Cui & Stacey F. Bent, 2022. "Electrical resistance of the current collector controls lithium morphology," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31507-w
    DOI: 10.1038/s41467-022-31507-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31507-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31507-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianming Zheng & Mark H. Engelhard & Donghai Mei & Shuhong Jiao & Bryant J. Polzin & Ji-Guang Zhang & Wu Xu, 2017. "Electrolyte additive enabled fast charging and stable cycling lithium metal batteries," Nature Energy, Nature, vol. 2(3), pages 1-8, March.
    2. Rochelle Weber & Matthew Genovese & A. J. Louli & Samuel Hames & Cameron Martin & Ian G. Hill & J. R. Dahn, 2019. "Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte," Nature Energy, Nature, vol. 4(8), pages 683-689, August.
    3. Zhiao Yu & Hansen Wang & Xian Kong & William Huang & Yuchi Tsao & David G. Mackanic & Kecheng Wang & Xinchang Wang & Wenxiao Huang & Snehashis Choudhury & Yu Zheng & Chibueze V. Amanchukwu & Samantha , 2020. "Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries," Nature Energy, Nature, vol. 5(7), pages 526-533, July.
    4. Jiangyan Wang & William Huang & Allen Pei & Yuzhang Li & Feifei Shi & Xiaoyun Yu & Yi Cui, 2019. "Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy," Nature Energy, Nature, vol. 4(8), pages 664-670, August.
    5. Chengcheng Fang & Jinxing Li & Minghao Zhang & Yihui Zhang & Fan Yang & Jungwoo Z. Lee & Min-Han Lee & Judith Alvarado & Marshall A. Schroeder & Yangyuchen Yang & Bingyu Lu & Nicholas Williams & Migue, 2019. "Quantifying inactive lithium in lithium metal batteries," Nature, Nature, vol. 572(7770), pages 511-515, August.
    6. Gang Ou & Yushuai Xu & Bo Wen & Rui Lin & Binghui Ge & Yan Tang & Yuwei Liang & Cheng Yang & Kai Huang & Di Zu & Rong Yu & Wenxing Chen & Jun Li & Hui Wu & Li-Min Liu & Yadong Li, 2018. "Tuning defects in oxides at room temperature by lithium reduction," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    7. Mukul D. Tikekar & Snehashis Choudhury & Zhengyuan Tu & Lynden A. Archer, 2016. "Design principles for electrolytes and interfaces for stable lithium-metal batteries," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    8. Kai Yan & Zhenda Lu & Hyun-Wook Lee & Feng Xiong & Po-Chun Hsu & Yuzhang Li & Jie Zhao & Steven Chu & Yi Cui, 2016. "Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth," Nature Energy, Nature, vol. 1(3), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sang Cheol Kim & Xin Gao & Sheng-Lun Liao & Hance Su & Yuelang Chen & Wenbo Zhang & Louisa C. Greenburg & Jou-An Pan & Xueli Zheng & Yusheng Ye & Mun Sek Kim & Philaphon Sayavong & Aaron Brest & Jian , 2024. "Solvation-property relationship of lithium-sulphur battery electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Yan Zhao & Tianhong Zhou & Mounir Mensi & Jang Wook Choi & Ali Coskun, 2023. "Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Qing Zhao & Yue Deng & Nyalaliska W. Utomo & Jingxu Zheng & Prayag Biswal & Jiefu Yin & Lynden A. Archer, 2021. "On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Hyeokjin Kwon & Hongsin Kim & Jaemin Hwang & Wonsik Oh & Youngil Roh & Dongseok Shin & Hee-Tak Kim, 2024. "Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion," Nature Energy, Nature, vol. 9(1), pages 57-69, January.
    5. Minsung Baek & Jinyoung Kim & Kwanghoon Jeong & Seonmo Yang & Heejin Kim & Jimin Lee & Minkwan Kim & Ki Jae Kim & Jang Wook Choi, 2023. "Naked metallic skin for homo-epitaxial deposition in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Shuoqing Zhang & Ruhong Li & Nan Hu & Tao Deng & Suting Weng & Zunchun Wu & Di Lu & Haikuo Zhang & Junbo Zhang & Xuefeng Wang & Lixin Chen & Liwu Fan & Xiulin Fan, 2022. "Tackling realistic Li+ flux for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Shuo Jin & Jiefu Yin & Xiaosi Gao & Arpita Sharma & Pengyu Chen & Shifeng Hong & Qing Zhao & Jingxu Zheng & Yue Deng & Yong Lak Joo & Lynden A. Archer, 2022. "Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Minglei Mao & Xiao Ji & Qiyu Wang & Zejing Lin & Meiying Li & Tao Liu & Chengliang Wang & Yong-Sheng Hu & Hong Li & Xuejie Huang & Liquan Chen & Liumin Suo, 2023. "Anion-enrichment interface enables high-voltage anode-free lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Muhammad Mominur Rahman & Sha Tan & Yang Yang & Hui Zhong & Sanjit Ghose & Iradwikanari Waluyo & Adrian Hunt & Lu Ma & Xiao-Qing Yang & Enyuan Hu, 2023. "An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    15. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Kai Yang & Hongchang Cai & Suran Li & Yu Wang & Xue Zhang & Zhenxuan Wu & Yilin Lai & Minella Bezha & Klara Bezha & Naoto Nagaoka & Yuejiu Zheng & Xuning Feng, 2024. "Research on Quantitative Diagnosis of Dendrites Based on Titration Gas Chromatography Technology," Energies, MDPI, vol. 17(10), pages 1-19, May.
    17. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Jiawei Chen & Daoming Zhang & Lei Zhu & Mingzhu Liu & Tianle Zheng & Jie Xu & Jun Li & Fei Wang & Yonggang Wang & Xiaoli Dong & Yongyao Xia, 2024. "Hybridizing carbonate and ether at molecular scales for high-energy and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Chao Chen & Jiaming Zhang & Benrui Hu & Qianwen Liang & Xunhui Xiong, 2023. "Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31507-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.