IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31231-5.html
   My bibliography  Save this article

Spin relaxation in a single-electron graphene quantum dot

Author

Listed:
  • L. Banszerus

    (RWTH Aachen University
    Forschungszentrum Jülich)

  • K. Hecker

    (RWTH Aachen University
    Forschungszentrum Jülich)

  • S. Möller

    (RWTH Aachen University
    Forschungszentrum Jülich)

  • E. Icking

    (RWTH Aachen University
    Forschungszentrum Jülich)

  • K. Watanabe

    (National Institute for Materials Science)

  • T. Taniguchi

    (National Institute for Materials Science)

  • C. Volk

    (RWTH Aachen University
    Forschungszentrum Jülich)

  • C. Stampfer

    (RWTH Aachen University
    Forschungszentrum Jülich)

Abstract

The relaxation time of a single-electron spin is an important parameter for solid-state spin qubits, as it directly limits the lifetime of the encoded information. Thanks to the low spin-orbit interaction and low hyperfine coupling, graphene and bilayer graphene (BLG) have long been considered promising platforms for spin qubits. Only recently, it has become possible to control single-electrons in BLG quantum dots (QDs) and to understand their spin-valley texture, while the relaxation dynamics have remained mostly unexplored. Here, we report spin relaxation times (T1) of single-electron states in BLG QDs. Using pulsed-gate spectroscopy, we extract relaxation times exceeding 200 μs at a magnetic field of 1.9 T. The T1 values show a strong dependence on the spin splitting, promising even longer T1 at lower magnetic fields, where our measurements are limited by the signal-to-noise ratio. The relaxation times are more than two orders of magnitude larger than those previously reported for carbon-based QDs, suggesting that graphene is a potentially promising host material for scalable spin qubits.

Suggested Citation

  • L. Banszerus & K. Hecker & S. Möller & E. Icking & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2022. "Spin relaxation in a single-electron graphene quantum dot," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31231-5
    DOI: 10.1038/s41467-022-31231-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31231-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31231-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao Xue & Maximilian Russ & Nodar Samkharadze & Brennan Undseth & Amir Sammak & Giordano Scappucci & Lieven M. K. Vandersypen, 2022. "Quantum logic with spin qubits crossing the surface code threshold," Nature, Nature, vol. 601(7893), pages 343-347, January.
    2. Y. He & S. K. Gorman & D. Keith & L. Kranz & J. G. Keizer & M. Y. Simmons, 2019. "A two-qubit gate between phosphorus donor electrons in silicon," Nature, Nature, vol. 571(7765), pages 371-375, July.
    3. Christian Volk & Christoph Neumann & Sebastian Kazarski & Stefan Fringes & Stephan Engels & Federica Haupt & André Müller & Christoph Stampfer, 2013. "Probing relaxation times in graphene quantum dots," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    4. Nico W. Hendrickx & William I. L. Lawrie & Maximilian Russ & Floor Riggelen & Sander L. Snoo & Raymond N. Schouten & Amir Sammak & Giordano Scappucci & Menno Veldhorst, 2021. "A four-qubit germanium quantum processor," Nature, Nature, vol. 591(7851), pages 580-585, March.
    5. M. Veldhorst & C. H. Yang & J. C. C. Hwang & W. Huang & J. P. Dehollain & J. T. Muhonen & S. Simmons & A. Laucht & F. E. Hudson & K. M. Itoh & A. Morello & A. S. Dzurak, 2015. "A two-qubit logic gate in silicon," Nature, Nature, vol. 526(7573), pages 410-414, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Hecker & L. Banszerus & A. Schäpers & S. Möller & A. Peters & E. Icking & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2023. "Coherent charge oscillations in a bilayer graphene double quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Robert Stockill & Moritz Forsch & Frederick Hijazi & Grégoire Beaudoin & Konstantinos Pantzas & Isabelle Sagnes & Rémy Braive & Simon Gröblacher, 2022. "Ultra-low-noise microwave to optics conversion in gallium phosphide," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. W. I. L. Lawrie & M. Rimbach-Russ & F. van Riggelen & N. W. Hendrickx & S. L. de Snoo & A. Sammak & G. Scappucci & J. Helsen & M. Veldhorst, 2023. "Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. E. Klein & E. Fouksman, 2022. "Reparations as a Rightful Share: From Universalism to Redress in Distributive Justice," Development and Change, International Institute of Social Studies, vol. 53(1), pages 31-57, January.
    8. Lee, Minwoo & Lee, Dongchan & Park, Myeong Hyeon & Kang, Yong Tae & Kim, Yongchan, 2022. "Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas," Energy, Elsevier, vol. 240(C).
    9. Tom Struck & Mats Volmer & Lino Visser & Tobias Offermann & Ran Xue & Jhih-Sian Tu & Stefan Trellenkamp & Łukasz Cywiński & Hendrik Bluhm & Lars R. Schreiber, 2024. "Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    11. Ran Xue & Max Beer & Inga Seidler & Simon Humpohl & Jhih-Sian Tu & Stefan Trellenkamp & Tom Struck & Hendrik Bluhm & Lars R. Schreiber, 2024. "Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    13. Raj, Praveen Vijaya Raj Pushpa & Nagarajan, Bagathsingh & Schoenherr, Tobias & Ramkumar, M., 2023. "A comparative investigation of a seller’s disaster payment period policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    14. Yi Liu & Johan V. Knutsson & Nathaniel Wilson & Elliot Young & Sebastian Lehmann & Kimberly A. Dick & Chris J. Palmstrøm & Anders Mikkelsen & Rainer Timm, 2021. "Self-selective formation of ordered 1D and 2D GaBi structures on wurtzite GaAs nanowire surfaces," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    15. Brian Paquelet Wuetz & Merritt P. Losert & Sebastian Koelling & Lucas E. A. Stehouwer & Anne-Marije J. Zwerver & Stephan G. J. Philips & Mateusz T. Mądzik & Xiao Xue & Guoji Zheng & Mario Lodari & Ser, 2022. "Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Xiqiao Wang & Ehsan Khatami & Fan Fei & Jonathan Wyrick & Pradeep Namboodiri & Ranjit Kashid & Albert F. Rigosi & Garnett Bryant & Richard Silver, 2022. "Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. K. Hecker & L. Banszerus & A. Schäpers & S. Möller & A. Peters & E. Icking & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2023. "Coherent charge oscillations in a bilayer graphene double quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Dotzauer, Martin & Oehmichen, Katja & Thrän, Daniela & Weber, Christoph, 2022. "Empirical greenhouse gas assessment for flexible bioenergy in interaction with the German power sector," Renewable Energy, Elsevier, vol. 181(C), pages 1100-1109.
    19. Fabrizio Berritta & Torbjørn Rasmussen & Jan A. Krzywda & Joost Heijden & Federico Fedele & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & Evert Nieuwenburg & Jeroen Danon & Anasua Chatterj, 2024. "Real-time two-axis control of a spin qubit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Alessandra Di Gaspare & Chao Song & Chiara Schiattarella & Lianhe H. Li & Mohammed Salih & A. Giles Davies & Edmund H. Linfield & Jincan Zhang & Osman Balci & Andrea C. Ferrari & Sukhdeep Dhillon & Mi, 2024. "Compact terahertz harmonic generation in the Reststrahlenband using a graphene-embedded metallic split ring resonator array," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31231-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.