IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v594y2021i7861d10.1038_s41586-021-03481-8.html
   My bibliography  Save this article

Telecom-heralded entanglement between multimode solid-state quantum memories

Author

Listed:
  • Dario Lago-Rivera

    (The Barcelona Institute of Science and Technology)

  • Samuele Grandi

    (The Barcelona Institute of Science and Technology)

  • Jelena V. Rakonjac

    (The Barcelona Institute of Science and Technology)

  • Alessandro Seri

    (The Barcelona Institute of Science and Technology)

  • Hugues de Riedmatten

    (The Barcelona Institute of Science and Technology
    ICREA – Institució Catalana de Recerca i Estudis Avançats)

Abstract

Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation1. At the core of this network lies the ability to generate and store entanglement at remote, interconnected quantum nodes2. Although various remote physical systems have been successfully entangled3–12, none of these realizations encompassed all of the requirements for network operation, such as compatibility with telecommunication (telecom) wavelengths and multimode operation. Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories. At each node a praseodymium-doped crystal13,14 stores a photon of a correlated pair15, with the second photon at telecom wavelengths. Entanglement between quantum memories placed in different laboratories is heralded by the detection of a telecom photon at a rate up to 1.4 kilohertz, and the entanglement is stored in the crystals for a pre-determined storage time up to 25 microseconds. We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes. Our realization is extendable to entanglement over longer distances and provides a viable route towards field-deployed, multiplexed quantum repeaters based on solid-state resources.

Suggested Citation

  • Dario Lago-Rivera & Samuele Grandi & Jelena V. Rakonjac & Alessandro Seri & Hugues de Riedmatten, 2021. "Telecom-heralded entanglement between multimode solid-state quantum memories," Nature, Nature, vol. 594(7861), pages 37-40, June.
  • Handle: RePEc:nat:nature:v:594:y:2021:i:7861:d:10.1038_s41586-021-03481-8
    DOI: 10.1038/s41586-021-03481-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03481-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03481-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dario Lago-Rivera & Jelena V. Rakonjac & Samuele Grandi & Hugues de Riedmatten, 2023. "Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Xiao Liu & Xiao-Min Hu & Tian-Xiang Zhu & Chao Zhang & Yi-Xin Xiao & Jia-Le Miao & Zhong-Wen Ou & Pei-Yun Li & Bi-Heng Liu & Zong-Quan Zhou & Chuan-Feng Li & Guang-Can Guo, 2024. "Nonlocal photonic quantum gates over 7.0 km," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:594:y:2021:i:7861:d:10.1038_s41586-021-03481-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.