IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36703-w.html
   My bibliography  Save this article

Chiral electrocatalysts eclipse water splitting metrics through spin control

Author

Listed:
  • Aravind Vadakkayil

    (University of Pittsburgh)

  • Caleb Clever

    (University of Pittsburgh)

  • Karli N. Kunzler

    (University of Pittsburgh)

  • Susheng Tan

    (University of Pittsburgh
    University of Pittsburgh)

  • Brian P. Bloom

    (University of Pittsburgh)

  • David H. Waldeck

    (University of Pittsburgh
    University of Pittsburgh)

Abstract

Continual progress in technologies that rely on water splitting are often hampered by the slow kinetics associated with the oxygen evolution reaction (OER). Here, we show that the efficiency of top-performing catalysts can be improved, beyond typical thermodynamic considerations, through control over reaction intermediate spin alignment during electrolysis. Spin alignment is achieved using the chiral induced spin selectivity (CISS) effect and the improvement in OER manifests as an increase in Faradaic efficiency, decrease in reaction overpotential, and change in the rate determining step for chiral nanocatalysts over compositionally analogous achiral nanocatalysts. These studies illustrate that a defined spatial orientation of the nanocatalysts is not necessary to exhibit spin selectivity and therefore represent a viable platform for employing the transformative role of chirality in other reaction pathways and processes.

Suggested Citation

  • Aravind Vadakkayil & Caleb Clever & Karli N. Kunzler & Susheng Tan & Brian P. Bloom & David H. Waldeck, 2023. "Chiral electrocatalysts eclipse water splitting metrics through spin control," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36703-w
    DOI: 10.1038/s41467-023-36703-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36703-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36703-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tianze Wu & Xiao Ren & Yuanmiao Sun & Shengnan Sun & Guoyu Xian & Günther G. Scherer & Adrian C. Fisher & Daniel Mandler & Joel W. Ager & Alexis Grimaud & Junling Wang & Chengmin Shen & Haitao Yang & , 2021. "Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Felipe A. Garcés-Pineda & Marta Blasco-Ahicart & David Nieto-Castro & Núria López & José Ramón Galán-Mascarós, 2019. "Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media," Nature Energy, Nature, vol. 4(6), pages 519-525, June.
    3. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyungsoo Lee & Chan Uk Lee & Juwon Yun & Chang-Seop Jeong & Wooyong Jeong & Jaehyun Son & Young Sun Park & Subin Moon & Soobin Lee & Jun Hwan Kim & Jooho Moon, 2024. "A dual spin-controlled chiral two-/three-dimensional perovskite artificial leaf for efficient overall photoelectrochemical water splitting," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Priscila Vensaus & Yunchang Liang & Jean-Philippe Ansermet & Galo J. A. A. Soler-Illia & Magalí Lingenfelder, 2024. "Enhancement of electrocatalysis through magnetic field effects on mass transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xiao Ren & Tianze Wu & Zizhao Gong & Lulu Pan & Jianling Meng & Haitao Yang & Freyja Bjork Dagbjartsdottir & Adrian Fisher & Hong-Jun Gao & Zhichuan J. Xu, 2023. "The origin of magnetization-caused increment in water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Shiquan Lin & Laipan Zhu & Zhen Tang & Zhong Lin Wang, 2022. "Spin-selected electron transfer in liquid–solid contact electrification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Siran Xu & Sihua Feng & Yue Yu & Dongping Xue & Mengli Liu & Chao Wang & Kaiyue Zhao & Bingjun Xu & Jia-Nan Zhang, 2024. "Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Chengwen Li & Ying-Bo Shao & Xi Gao & Zhiyuan Ren & Chenhao Guo & Meng Li & Xin Li, 2023. "Enantioselective synthesis of chiral quinohelicenes through sequential organocatalyzed Povarov reaction and oxidative aromatization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Jonas A. Krieger & Samuel Stolz & Iñigo Robredo & Kaustuv Manna & Emily C. McFarlane & Mihir Date & Banabir Pal & Jiabao Yang & Eduardo B. Guedes & J. Hugo Dil & Craig M. Polley & Mats Leandersson & C, 2024. "Weyl spin-momentum locking in a chiral topological semimetal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Minhua Ai & Lun Pan & Chengxiang Shi & Zhen-Feng Huang & Xiangwen Zhang & Wenbo Mi & Ji-Jun Zou, 2023. "Spin selection in atomic-level chiral metal oxide for photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. El-Nowihy, Ghada H. & Abdellatif, Mohammad M. & El-Deab, Mohamed S., 2024. "Magnetic field-assisted water splitting at ternary NiCoFe magnetic Nanocatalysts: Optimization study," Renewable Energy, Elsevier, vol. 226(C).
    11. Zhao, Pengcheng & Wang, Jingang & Xia, Haiting & He, Wei, 2024. "A novel industrial magnetically enhanced hydrogen production electrolyzer and effect of magnetic field configuration," Applied Energy, Elsevier, vol. 367(C).
    12. Hyungsoo Lee & Chan Uk Lee & Juwon Yun & Chang-Seop Jeong & Wooyong Jeong & Jaehyun Son & Young Sun Park & Subin Moon & Soobin Lee & Jun Hwan Kim & Jooho Moon, 2024. "A dual spin-controlled chiral two-/three-dimensional perovskite artificial leaf for efficient overall photoelectrochemical water splitting," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Li, Zihan & Lv, Zunhang & Liu, Xin & Wang, Guixue & Lin, Yusheng & Xie, Guangwen & Jiang, Luhua, 2021. "Magnetic-field guided synthesis of highly active Ni–S–CoFe2O4 electrocatalysts for oxygen evolution reaction," Renewable Energy, Elsevier, vol. 165(P1), pages 612-618.
    14. Marshet Getaye Sendeku & Karim Harrath & Fekadu Tsegaye Dajan & Binglan Wu & Sabir Hussain & Ning Gao & Xueying Zhan & Ying Yang & Zhenxing Wang & Chen Chen & Weiqiang Liu & Fengmei Wang & Haohong Dua, 2024. "Deciphering in-situ surface reconstruction in two-dimensional CdPS3 nanosheets for efficient biomass hydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Siliu Lyu & Chenxi Guo & Jianing Wang & Zhongjian Li & Bin Yang & Lecheng Lei & Liping Wang & Jianping Xiao & Tao Zhang & Yang Hou, 2022. "Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36703-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.