IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39134-9.html
   My bibliography  Save this article

Enantioselective synthesis of chiral quinohelicenes through sequential organocatalyzed Povarov reaction and oxidative aromatization

Author

Listed:
  • Chengwen Li

    (Nankai University)

  • Ying-Bo Shao

    (Nankai University)

  • Xi Gao

    (Nankai University)

  • Zhiyuan Ren

    (Nankai University)

  • Chenhao Guo

    (Chinese Academy of Sciences)

  • Meng Li

    (Chinese Academy of Sciences)

  • Xin Li

    (Nankai University
    Haihe Laboratory of Sustainable Chemical Transformations)

Abstract

Heterohelicenes are of increasing importance in the fields of materials science, molecular recognition, and asymmetric catalysis. However, enantioselective construction of these molecules, especially by organocatalytic methods, is challenging, and few methods are available. In this study, we synthesize enantioenriched 1-(3-indol)-quino[n]helicenes through chiral phosphoric acid-catalyzed Povarov reaction followed by oxidative aromatization. The method has a broad substrate scope and offers rapid access to an array of chiral quinohelicenes with enantioselectivities up to 99%. Additionally, the photochemical and electrochemical properties of selected quinohelicenes are explored.

Suggested Citation

  • Chengwen Li & Ying-Bo Shao & Xi Gao & Zhiyuan Ren & Chenhao Guo & Meng Li & Xin Li, 2023. "Enantioselective synthesis of chiral quinohelicenes through sequential organocatalyzed Povarov reaction and oxidative aromatization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39134-9
    DOI: 10.1038/s41467-023-39134-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39134-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39134-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chengshuo Shen & Guoli Zhang & Yongle Ding & Na Yang & Fuwei Gan & Jeanne Crassous & Huibin Qiu, 2021. "Oxidative cyclo-rearrangement of helicenes into chiral nanographenes," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xihong Liu & Boyan Zhu & Xiaoyong Zhang & Hanwen Zhu & Jingying Zhang & Anqi Chu & Fujun Wang & Rui Wang, 2024. "Enantioselective synthesis of [4]helicenes by organocatalyzed intermolecular C-H amination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jiahao Wu & Xiangwen Tan & Wanqing Wu & Huanfeng Jiang, 2024. "Palladium-catalyzed cascade of aza-Wacker and Povarov reactions of aryl amines and 1,6-dienes for hexahydro-cyclopenta[b]quinoline framework," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Shao-Qing Shi & Chen-Chang Cui & Lin-Lin Xu & Jin-Peng Zhang & Wen-Juan Hao & Jianyi Wang & Bo Jiang, 2024. "Enantioselective synthesis of saddle-shaped eight-membered lactones with inherent chirality via organocatalytic high-order annulation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas A. Krieger & Samuel Stolz & Iñigo Robredo & Kaustuv Manna & Emily C. McFarlane & Mihir Date & Banabir Pal & Jiabao Yang & Eduardo B. Guedes & J. Hugo Dil & Craig M. Polley & Mats Leandersson & C, 2024. "Weyl spin-momentum locking in a chiral topological semimetal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Minhua Ai & Lun Pan & Chengxiang Shi & Zhen-Feng Huang & Xiangwen Zhang & Wenbo Mi & Ji-Jun Zou, 2023. "Spin selection in atomic-level chiral metal oxide for photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Priscila Vensaus & Yunchang Liang & Jean-Philippe Ansermet & Galo J. A. A. Soler-Illia & Magalí Lingenfelder, 2024. "Enhancement of electrocatalysis through magnetic field effects on mass transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Aravind Vadakkayil & Caleb Clever & Karli N. Kunzler & Susheng Tan & Brian P. Bloom & David H. Waldeck, 2023. "Chiral electrocatalysts eclipse water splitting metrics through spin control," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Guoli Zhang & Jian Zhang & Yu Tao & Fuwei Gan & Geyu Lin & Juncong Liang & Chengshuo Shen & Yuebiao Zhang & Huibin Qiu, 2024. "Facile fabrication of recyclable robust noncovalent porous crystals from low-symmetry helicene derivative," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39134-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.