IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54318-7.html
   My bibliography  Save this article

Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation

Author

Listed:
  • Bailin Tian

    (Nanjing University)

  • Fangyuan Wang

    (Nanjing University)

  • Pan Ran

    (Nanjing University)

  • Luhan Dai

    (Nanjing University)

  • Yang Lv

    (Nanjing University)

  • Yuxia Sun

    (Nanjing University)

  • Zhangyan Mu

    (Nanjing University)

  • Yamei Sun

    (Nanjing University)

  • Lingyu Tang

    (Nanjing University)

  • William A. Goddard

    (California Institute of Technology)

  • Mengning Ding

    (Nanjing University)

Abstract

Electro-selective-oxidation using water as a green oxygen source demonstrates promising potential towards efficient and sustainable chemical upgrading. However, surface micro-kinetics regarding co-adsorption and reaction between organic and oxygen intermediates remain unclear. Here we systematically study the electro-oxidation of aldehydes, alcohols, and amines on Co/Ni-oxyhydroxides with multiple characterizations. Utilizing Fourier transformed alternating current voltammetry (FTacV) measurements, we show the identification and quantification of two key operando parameters (ΔIharmonics/IOER and ΔVharmonics) that can be fundamentally linked to the altered surface coverage ( $$\Delta {\theta }_{{{{{\rm{OH}}}}}^{*}}/{\theta }_{{{{{\rm{OH}}}}}^{*}}^{{{{\rm{OER}}}}}$$ Δ θ OH * / θ OH * OER ) and the changes in adsorption energy of vital oxygenated intermediates ( $${\Delta G}_{{{{\rm{OH}}}}*}^{{{{\rm{EOOR}}}}}-{\Delta G}_{{{{\rm{OH}}}}*}^{{{{\rm{OER}}}}}$$ Δ G OH * EOOR − Δ G OH * OER ), under the influence of organic adsorption/oxidation. Mechanistic analysis based on these descriptors reveals distinct optimal oxyhydroxide surface states for each organics, and elucidates the critical catalyst design principles: balancing organic and M3+δ−OH* coverages and fine-tuning ΔG for key elementary steps, e.g., via precise modulation of chemical compositions, crystallinity, defects, electronic structures, and/or surface bimolecular interactions.

Suggested Citation

  • Bailin Tian & Fangyuan Wang & Pan Ran & Luhan Dai & Yang Lv & Yuxia Sun & Zhangyan Mu & Yamei Sun & Lingyu Tang & William A. Goddard & Mengning Ding, 2024. "Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54318-7
    DOI: 10.1038/s41467-024-54318-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54318-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54318-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Panlong Zhai & Mingyue Xia & Yunzhen Wu & Guanghui Zhang & Junfeng Gao & Bo Zhang & Shuyan Cao & Yanting Zhang & Zhuwei Li & Zhaozhong Fan & Chen Wang & Xiaomeng Zhang & Jeffrey T. Miller & Licheng Su, 2021. "Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Ganceng Yang & Yanqing Jiao & Haijing Yan & Ying Xie & Chungui Tian & Aiping Wu & Yu Wang & Honggang Fu, 2022. "Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Tianze Wu & Xiao Ren & Yuanmiao Sun & Shengnan Sun & Guoyu Xian & Günther G. Scherer & Adrian C. Fisher & Daniel Mandler & Joel W. Ager & Alexis Grimaud & Junling Wang & Chengmin Shen & Haitao Yang & , 2021. "Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Zhirong Zhang & Chen Feng & Dongdi Wang & Shiming Zhou & Ruyang Wang & Sunpei Hu & Hongliang Li & Ming Zuo & Yuan Kong & Jun Bao & Jie Zeng, 2022. "Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Lichen Bai & Chia-Shuo Hsu & Duncan T. L. Alexander & Hao Ming Chen & Xile Hu, 2021. "Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis," Nature Energy, Nature, vol. 6(11), pages 1054-1066, November.
    6. Aditya M. Limaye & Joy S. Zeng & Adam P. Willard & Karthish Manthiram, 2021. "Bayesian data analysis reveals no preference for cardinal Tafel slopes in CO2 reduction electrocatalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Yanbin Qi & Yue Zhang & Li Yang & Yuhan Zhao & Yihua Zhu & Hongliang Jiang & Chunzhong Li, 2022. "Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Antonia Herzog & Mauricio Lopez Luna & Hyo Sang Jeon & Clara Rettenmaier & Philipp Grosse & Arno Bergmann & Beatriz Roldan Cuenya, 2024. "Operando Raman spectroscopy uncovers hydroxide and CO species enhance ethanol selectivity during pulsed CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Michael T. Bender & Xin Yuan & Kyoung-Shin Choi, 2020. "Alcohol oxidation as alternative anode reactions paired with (photo)electrochemical fuel production reactions," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    10. Fabio Dionigi & Zhenhua Zeng & Ilya Sinev & Thomas Merzdorf & Siddharth Deshpande & Miguel Bernal Lopez & Sebastian Kunze & Ioannis Zegkinoglou & Hannes Sarodnik & Dingxin Fan & Arno Bergmann & Jakub , 2020. "In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    11. Shanlin Li & Ruguang Ma & Jingcong Hu & Zichuang Li & Lijia Liu & Xunlu Wang & Yue Lu & George E. Sterbinsky & Shuhu Liu & Lei Zheng & Jie Liu & Danmin Liu & Jiacheng Wang, 2022. "Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Pan Ran & Aoqian Qiu & Tianshu Liu & Fangyuan Wang & Bailin Tian & Beiyao Xiang & Jun Li & Yang Lv & Mengning Ding, 2024. "Universal high-efficiency electrocatalytic olefin epoxidation via a surface-confined radical promotion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Tengfei Li & Takahito Kasahara & Jingfu He & Kevan E. Dettelbach & Glenn M. Sammis & Curtis P. Berlinguette, 2017. "Photoelectrochemical oxidation of organic substrates in organic media," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
    14. J. Tyler Mefford & Andrew R. Akbashev & Minkyung Kang & Cameron L. Bentley & William E. Gent & Haitao D. Deng & Daan Hein Alsem & Young-Sang Yu & Norman J. Salmon & David A. Shapiro & Patrick R. Unwin, 2021. "Correlative operando microscopy of oxygen evolution electrocatalysts," Nature, Nature, vol. 593(7857), pages 67-73, May.
    15. Mengning Ding & Qiyuan He & Gongming Wang & Hung-Chieh Cheng & Yu Huang & Xiangfeng Duan, 2015. "An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xintong Gao & Xiaowan Bai & Pengtang Wang & Yan Jiao & Kenneth Davey & Yao Zheng & Shi-Zhang Qiao, 2023. "Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Lin Chen & Chang Yu & Xuedan Song & Junting Dong & Jiawei Mu & Jieshan Qiu, 2024. "Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Qianbao Wu & Junwu Liang & Mengjun Xiao & Chang Long & Lei Li & Zhenhua Zeng & Andraž Mavrič & Xia Zheng & Jing Zhu & Hai-Wei Liang & Hongfei Liu & Matjaz Valant & Wei Wang & Zhengxing Lv & Jiong Li &, 2023. "Non-covalent ligand-oxide interaction promotes oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Yunxiang Lin & Bo Geng & Ruyun Zheng & Wei Chen & Jiahui Zhao & Hengjie Liu & Zeming Qi & Zhipeng Yu & Kun Xu & Xue Liu & Li Yang & Lei Shan & Li Song, 2025. "Optimizing surface active sites via burying single atom into subsurface lattice for boosted methanol electrooxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. Yanghang Pan & Xinzhu Wang & Weiyang Zhang & Lingyu Tang & Zhangyan Mu & Cheng Liu & Bailin Tian & Muchun Fei & Yamei Sun & Huanhuan Su & Libo Gao & Peng Wang & Xiangfeng Duan & Jing Ma & Mengning Din, 2022. "Boosting the performance of single-atom catalysts via external electric field polarization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Cai, Jiajia & Tang, Xiangxuan & Wang, Jianmin & Zhang, Tingting & Xie, Qian & Mao, Keke & Li, Song & Qin, Gaowu, 2024. "Self-driving photothermal anode electrocatalyst towards the robust OER for water electrolysis," Renewable Energy, Elsevier, vol. 232(C).
    11. Botao Zhu & Bo Dong & Feng Wang & Qifeng Yang & Yunpeng He & Cunjin Zhang & Peng Jin & Lai Feng, 2023. "Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Dan Wu & Longfei Hu & Xiaokang Liu & Tong Liu & Xiangyu Zhu & Qiquan Luo & Huijuan Zhang & Linlin Cao & Jinlong Yang & Zheng Jiang & Tao Yao, 2025. "Time-resolved spectroscopy uncovers deprotonation-induced reconstruction in oxygen-evolution NiFe-based (oxy)hydroxides," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    13. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Shiquan Lin & Laipan Zhu & Zhen Tang & Zhong Lin Wang, 2022. "Spin-selected electron transfer in liquid–solid contact electrification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
    16. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Li, Dandan & Ding, Lei & Zhao, Qiang & Yang, Feng & Zhang, Sihang, 2024. "Controllable construction of bifunctional sites on Ir@Ni/NiO core/shell porous nanorod arrays for efficient water splitting," Applied Energy, Elsevier, vol. 356(C).
    18. Suiqin Li & Shibin Wang & Yuhang Wang & Jiahui He & Kai Li & James B. Gerken & Shannon S. Stahl & Xing Zhong & Jianguo Wang, 2025. "Synergistic enhancement of electrochemical alcohol oxidation by combining NiV-layered double hydroxide with an aminoxyl radical," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Raj Pandya & Florian Dorchies & Davide Romanin & Jean-François Lemineur & Frédéric Kanoufi & Sylvain Gigan & Alex W. Chin & Hilton B. Aguiar & Alexis Grimaud, 2024. "Concurrent oxygen evolution reaction pathways revealed by high-speed compressive Raman imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Wanyu Deng & Peng Zhang & Yu Qiao & Georg Kastlunger & Nitish Govindarajan & Aoni Xu & Ib Chorkendorff & Brian Seger & Jinlong Gong, 2024. "Unraveling the rate-determining step of C2+ products during electrochemical CO reduction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54318-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.