IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i6d10.1038_s41560-019-0404-4.html
   My bibliography  Save this article

Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media

Author

Listed:
  • Felipe A. Garcés-Pineda

    (The Barcelona Institute of Science and Technology (BIST))

  • Marta Blasco-Ahicart

    (The Barcelona Institute of Science and Technology (BIST))

  • David Nieto-Castro

    (The Barcelona Institute of Science and Technology (BIST))

  • Núria López

    (The Barcelona Institute of Science and Technology (BIST))

  • José Ramón Galán-Mascarós

    (The Barcelona Institute of Science and Technology (BIST)
    Catalan Institution for Research and Advanced Studies (ICREA))

Abstract

Industrially profitable water splitting is one of the great challenges in the development of a viable and sustainable hydrogen economy. Alkaline electrolysers using Earth-abundant catalysts remain the most economically viable route to electrolytic hydrogen, but improved efficiency is desirable. Recently, electron spin polarization was described as a potential way to improve water-splitting catalysis. Here, we report the significant enhancement of alkaline water electrolysis when a moderate magnetic field (≤450 mT) is applied to the anode. Current density increments above 100% (over 100 mA cm−2) were found for highly magnetic electrocatalysts, such as the mixed oxide NiZnFe4Ox. Magnetic enhancement works even for decorated Ni–foam electrodes with very high current densities, improving their intrinsic activity by about 40% to reach over 1 A cm−2 at low overpotentials. Thanks to its simplicity, our discovery opens opportunities for implementing magnetic enhancement in water splitting.

Suggested Citation

  • Felipe A. Garcés-Pineda & Marta Blasco-Ahicart & David Nieto-Castro & Núria López & José Ramón Galán-Mascarós, 2019. "Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media," Nature Energy, Nature, vol. 4(6), pages 519-525, June.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:6:d:10.1038_s41560-019-0404-4
    DOI: 10.1038/s41560-019-0404-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-019-0404-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-019-0404-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siliu Lyu & Chenxi Guo & Jianing Wang & Zhongjian Li & Bin Yang & Lecheng Lei & Liping Wang & Jianping Xiao & Tao Zhang & Yang Hou, 2022. "Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Xiao Ren & Tianze Wu & Zizhao Gong & Lulu Pan & Jianling Meng & Haitao Yang & Freyja Bjork Dagbjartsdottir & Adrian Fisher & Hong-Jun Gao & Zhichuan J. Xu, 2023. "The origin of magnetization-caused increment in water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Priscila Vensaus & Yunchang Liang & Jean-Philippe Ansermet & Galo J. A. A. Soler-Illia & Magalí Lingenfelder, 2024. "Enhancement of electrocatalysis through magnetic field effects on mass transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Aravind Vadakkayil & Caleb Clever & Karli N. Kunzler & Susheng Tan & Brian P. Bloom & David H. Waldeck, 2023. "Chiral electrocatalysts eclipse water splitting metrics through spin control," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Li, Zihan & Lv, Zunhang & Liu, Xin & Wang, Guixue & Lin, Yusheng & Xie, Guangwen & Jiang, Luhua, 2021. "Magnetic-field guided synthesis of highly active Ni–S–CoFe2O4 electrocatalysts for oxygen evolution reaction," Renewable Energy, Elsevier, vol. 165(P1), pages 612-618.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:6:d:10.1038_s41560-019-0404-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.