IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47976-0.html
   My bibliography  Save this article

Weyl spin-momentum locking in a chiral topological semimetal

Author

Listed:
  • Jonas A. Krieger

    (Max Planck Institut für Mikrostrukturphysik
    Paul Scherrer Institute)

  • Samuel Stolz

    (University of California
    Swiss Federal Laboratories for Materials Science and Technology)

  • Iñigo Robredo

    (Max Planck Institute for Chemical Physics of Solids
    Donostia International Physics Center)

  • Kaustuv Manna

    (Indian Institute of Technology-Delhi)

  • Emily C. McFarlane

    (Max Planck Institut für Mikrostrukturphysik)

  • Mihir Date

    (Max Planck Institut für Mikrostrukturphysik)

  • Banabir Pal

    (Max Planck Institut für Mikrostrukturphysik)

  • Jiabao Yang

    (Max Planck Institut für Mikrostrukturphysik)

  • Eduardo B. Guedes

    (Paul Scherrer Institute
    École Polytechnique Fédérale de Lausanne)

  • J. Hugo Dil

    (Paul Scherrer Institute
    École Polytechnique Fédérale de Lausanne)

  • Craig M. Polley

    (Lund University)

  • Mats Leandersson

    (Lund University)

  • Chandra Shekhar

    (Max Planck Institute for Chemical Physics of Solids)

  • Horst Borrmann

    (Max Planck Institute for Chemical Physics of Solids)

  • Qun Yang

    (Max Planck Institute for Chemical Physics of Solids)

  • Mao Lin

    (University of Illinois)

  • Vladimir N. Strocov

    (Paul Scherrer Institute)

  • Marco Caputo

    (Paul Scherrer Institute)

  • Matthew D. Watson

    (Harwell Science and Innovation Campus)

  • Timur K. Kim

    (Harwell Science and Innovation Campus)

  • Cephise Cacho

    (Harwell Science and Innovation Campus)

  • Federico Mazzola

    (Consiglio Nazionale delle Ricerche
    Ca’ Foscari University of Venice)

  • Jun Fujii

    (Area Science Park)

  • Ivana Vobornik

    (Area Science Park)

  • Stuart S. P. Parkin

    (Max Planck Institut für Mikrostrukturphysik)

  • Barry Bradlyn

    (University of Illinois)

  • Claudia Felser

    (Max Planck Institute for Chemical Physics of Solids)

  • Maia G. Vergniory

    (Max Planck Institute for Chemical Physics of Solids
    Donostia International Physics Center)

  • Niels B. M. Schröter

    (Max Planck Institut für Mikrostrukturphysik)

Abstract

Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking – a directional relationship between an electron’s spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.

Suggested Citation

  • Jonas A. Krieger & Samuel Stolz & Iñigo Robredo & Kaustuv Manna & Emily C. McFarlane & Mihir Date & Banabir Pal & Jiabao Yang & Eduardo B. Guedes & J. Hugo Dil & Craig M. Polley & Mats Leandersson & C, 2024. "Weyl spin-momentum locking in a chiral topological semimetal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47976-0
    DOI: 10.1038/s41467-024-47976-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47976-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47976-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhicheng Rao & Hang Li & Tiantian Zhang & Shangjie Tian & Chenghe Li & Binbin Fu & Cenyao Tang & Le Wang & Zhilin Li & Wenhui Fan & Jiajun Li & Yaobo Huang & Zhehong Liu & Youwen Long & Chen Fang & Ho, 2019. "Observation of unconventional chiral fermions with long Fermi arcs in CoSi," Nature, Nature, vol. 567(7749), pages 496-499, March.
    2. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Paolo Sessi & Feng-Ren Fan & Felix Küster & Kaustuv Manna & Niels B. M. Schröter & Jing-Rong Ji & Samuel Stolz & Jonas A. Krieger & Ding Pei & Timur K. Kim & Pavel Dudin & Cephise Cacho & Roland Wid, 2020. "Handedness-dependent quasiparticle interference in the two enantiomers of the topological chiral semimetal PdGa," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Daniel S. Sanchez & Ilya Belopolski & Tyler A. Cochran & Xitong Xu & Jia-Xin Yin & Guoqing Chang & Weiwei Xie & Kaustuv Manna & Vicky Süß & Cheng-Yi Huang & Nasser Alidoust & Daniel Multer & Songtian , 2019. "Topological chiral crystals with helicoid-arc quantum states," Nature, Nature, vol. 567(7749), pages 500-505, March.
    5. Tetsuya Furukawa & Yuri Shimokawa & Kaya Kobayashi & Tetsuaki Itou, 2017. "Observation of current-induced bulk magnetization in elemental tellurium," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geng Li & Haitao Yang & Peijie Jiang & Cong Wang & Qiuzhen Cheng & Shangjie Tian & Guangyuan Han & Chengmin Shen & Xiao Lin & Hechang Lei & Wei Ji & Ziqiang Wang & Hong-Jun Gao, 2022. "Chirality locking charge density waves in a chiral crystal," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Federico Balduini & Alan Molinari & Lorenzo Rocchino & Vicky Hasse & Claudia Felser & Marilyne Sousa & Cezar Zota & Heinz Schmid & Adolfo G. Grushin & Bernd Gotsmann, 2024. "Intrinsic negative magnetoresistance from the chiral anomaly of multifold fermions," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Qiaolu Chen & Fujia Chen & Yuang Pan & Chaoxi Cui & Qinghui Yan & Li Zhang & Zhen Gao & Shengyuan A. Yang & Zhi-Ming Yu & Hongsheng Chen & Baile Zhang & Yihao Yang, 2022. "Discovery of a maximally charged Weyl point," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Xianyang Lu & Zhiyong Lin & Hanqi Pi & Tan Zhang & Guanqi Li & Yuting Gong & Yu Yan & Xuezhong Ruan & Yao Li & Hui Zhang & Lin Li & Liang He & Jing Wu & Rong Zhang & Hongming Weng & Changgan Zeng & Yo, 2024. "Ultrafast magnetization enhancement via the dynamic spin-filter effect of type-II Weyl nodes in a kagome ferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Minhua Ai & Lun Pan & Chengxiang Shi & Zhen-Feng Huang & Xiangwen Zhang & Wenbo Mi & Ji-Jun Zou, 2023. "Spin selection in atomic-level chiral metal oxide for photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Aravind Vadakkayil & Caleb Clever & Karli N. Kunzler & Susheng Tan & Brian P. Bloom & David H. Waldeck, 2023. "Chiral electrocatalysts eclipse water splitting metrics through spin control," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Geert L. J. A. Rikken & Narcis Avarvari, 2022. "Dielectric magnetochiral anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    9. Sungjoon Park & Yoonseok Hwang & Hong Chul Choi & Bohm-Jung Yang, 2021. "Topological acoustic triple point," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Chengwen Li & Ying-Bo Shao & Xi Gao & Zhiyuan Ren & Chenhao Guo & Meng Li & Xin Li, 2023. "Enantioselective synthesis of chiral quinohelicenes through sequential organocatalyzed Povarov reaction and oxidative aromatization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Priscila Vensaus & Yunchang Liang & Jean-Philippe Ansermet & Galo J. A. A. Soler-Illia & Magalí Lingenfelder, 2024. "Enhancement of electrocatalysis through magnetic field effects on mass transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Ying-Jiun Chen & Jan-Philipp Hanke & Markus Hoffmann & Gustav Bihlmayer & Yuriy Mokrousov & Stefan Blügel & Claus M. Schneider & Christian Tusche, 2022. "Spanning Fermi arcs in a two-dimensional magnet," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47976-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.