IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23896-1.html
   My bibliography  Save this article

Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation

Author

Listed:
  • Tianze Wu

    (Nanyang Technological University
    Chinese Academy of Science
    Nanyang Technological University)

  • Xiao Ren

    (Nanyang Technological University)

  • Yuanmiao Sun

    (Nanyang Technological University)

  • Shengnan Sun

    (Nanyang Technological University)

  • Guoyu Xian

    (Chinese Academy of Science)

  • Günther G. Scherer
  • Adrian C. Fisher

    (University of Cambridge)

  • Daniel Mandler

    (The Hebrew University of Jerusalem
    Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE))

  • Joel W. Ager

    (University of California at Berkeley
    Berkeley Educational Alliance for Research in Singapore (BEARS), Ltd.)

  • Alexis Grimaud

    (Chimie du Solide et de l’Energie, UMR 8260, Collège de France
    Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459)

  • Junling Wang

    (Nanyang Technological University)

  • Chengmin Shen

    (Chinese Academy of Science)

  • Haitao Yang

    (Chinese Academy of Science)

  • Jose Gracia

    (MagnetoCat SL, General Polavieja 9 3I)

  • Hong-Jun Gao

    (Chinese Academy of Science)

  • Zhichuan J. Xu

    (Nanyang Technological University
    Nanyang Technological University
    Energy Research Institute @ Nanyang Technological University)

Abstract

Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER, to manipulate the spin ordering of ferromagnetic OER catalysts (e.g., by magnetization) can reduce the kinetic barrier. However, most active OER catalysts are not ferromagnetic, which makes the spin manipulation challenging. In this work, we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning, simple magnetization further increases the spin alignment and thus the OER activity, which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.

Suggested Citation

  • Tianze Wu & Xiao Ren & Yuanmiao Sun & Shengnan Sun & Guoyu Xian & Günther G. Scherer & Adrian C. Fisher & Daniel Mandler & Joel W. Ager & Alexis Grimaud & Junling Wang & Chengmin Shen & Haitao Yang & , 2021. "Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23896-1
    DOI: 10.1038/s41467-021-23896-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23896-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23896-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Xiao Ren & Tianze Wu & Zizhao Gong & Lulu Pan & Jianling Meng & Haitao Yang & Freyja Bjork Dagbjartsdottir & Adrian Fisher & Hong-Jun Gao & Zhichuan J. Xu, 2023. "The origin of magnetization-caused increment in water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Siran Xu & Sihua Feng & Yue Yu & Dongping Xue & Mengli Liu & Chao Wang & Kaiyue Zhao & Bingjun Xu & Jia-Nan Zhang, 2024. "Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Shiquan Lin & Laipan Zhu & Zhen Tang & Zhong Lin Wang, 2022. "Spin-selected electron transfer in liquid–solid contact electrification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Priscila Vensaus & Yunchang Liang & Jean-Philippe Ansermet & Galo J. A. A. Soler-Illia & Magalí Lingenfelder, 2024. "Enhancement of electrocatalysis through magnetic field effects on mass transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Aravind Vadakkayil & Caleb Clever & Karli N. Kunzler & Susheng Tan & Brian P. Bloom & David H. Waldeck, 2023. "Chiral electrocatalysts eclipse water splitting metrics through spin control," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23896-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.