IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40367-x.html
   My bibliography  Save this article

Spin selection in atomic-level chiral metal oxide for photocatalysis

Author

Listed:
  • Minhua Ai

    (Tianjin University
    Collaborative Innovative Center of Chemical Science and Engineering (Tianjin))

  • Lun Pan

    (Tianjin University
    Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Chengxiang Shi

    (Tianjin University
    Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Zhen-Feng Huang

    (Tianjin University
    Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Xiangwen Zhang

    (Tianjin University
    Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Wenbo Mi

    (Tianjin University)

  • Ji-Jun Zou

    (Tianjin University
    Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

Abstract

The spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality. Magnetic circular dichroism spectroscopic and magnetic conductive-probe atomic force microscopic measurements demonstrate that chiral structure acts as spin filters and induces spin polarization in photoinduced carriers. The polarized carriers not only possess the prolonged carrier lifetime, but also increase the triplet species instead of singlet byproducts during reaction. Accordingly, the left- and right-hand chiral ZnO exhibit 2.0- and 1.9-times higher activity in photocatalytic O2 production and 2.5- and 2.0-times higher activities in contaminant photodegradation, respectively, compared with achiral ZnO. This work provides a feasible strategy to manipulate the spin properties in metal oxides for electron spin-related redox catalysis.

Suggested Citation

  • Minhua Ai & Lun Pan & Chengxiang Shi & Zhen-Feng Huang & Xiangwen Zhang & Wenbo Mi & Ji-Jun Zou, 2023. "Spin selection in atomic-level chiral metal oxide for photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40367-x
    DOI: 10.1038/s41467-023-40367-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40367-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40367-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Lun Pan & Minhua Ai & Chenyu Huang & Li Yin & Xiang Liu & Rongrong Zhang & Songbo Wang & Zheng Jiang & Xiangwen Zhang & Ji-Jun Zou & Wenbo Mi, 2020. "Manipulating spin polarization of titanium dioxide for efficient photocatalysis," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jiahe Zhang & Xiaoning Li & Haijun Hu & Hongwei Huang & Hui Li & Xiaodong Sun & Tianyi Ma, 2024. "Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Aravind Vadakkayil & Caleb Clever & Karli N. Kunzler & Susheng Tan & Brian P. Bloom & David H. Waldeck, 2023. "Chiral electrocatalysts eclipse water splitting metrics through spin control," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Chengwen Li & Ying-Bo Shao & Xi Gao & Zhiyuan Ren & Chenhao Guo & Meng Li & Xin Li, 2023. "Enantioselective synthesis of chiral quinohelicenes through sequential organocatalyzed Povarov reaction and oxidative aromatization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Jonas A. Krieger & Samuel Stolz & Iñigo Robredo & Kaustuv Manna & Emily C. McFarlane & Mihir Date & Banabir Pal & Jiabao Yang & Eduardo B. Guedes & J. Hugo Dil & Craig M. Polley & Mats Leandersson & C, 2024. "Weyl spin-momentum locking in a chiral topological semimetal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Priscila Vensaus & Yunchang Liang & Jean-Philippe Ansermet & Galo J. A. A. Soler-Illia & Magalí Lingenfelder, 2024. "Enhancement of electrocatalysis through magnetic field effects on mass transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Jia-Rui Wang & Kepeng Song & Tian-Xiang Luan & Ke Cheng & Qiurong Wang & Yue Wang & William W. Yu & Pei-Zhou Li & Yanli Zhao, 2024. "Robust links in photoactive covalent organic frameworks enable effective photocatalytic reactions under harsh conditions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40367-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.