IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35276-4.html
   My bibliography  Save this article

An in silico method to assess antibody fragment polyreactivity

Author

Listed:
  • Edward P. Harvey

    (Harvard Medical School)

  • Jung-Eun Shin

    (Harvard Medical School)

  • Meredith A. Skiba

    (Harvard Medical School)

  • Genevieve R. Nemeth

    (Harvard Medical School)

  • Joseph D. Hurley

    (Harvard Medical School)

  • Alon Wellner

    (University of California
    University of California
    University of California)

  • Ada Y. Shaw

    (Harvard Medical School)

  • Victor G. Miranda

    (Harvard Medical School)

  • Joseph K. Min

    (Harvard Medical School)

  • Chang C. Liu

    (University of California
    University of California
    University of California)

  • Debora S. Marks

    (Harvard Medical School
    Broad Institute of Harvard and MIT)

  • Andrew C. Kruse

    (Harvard Medical School)

Abstract

Antibodies are essential biological research tools and important therapeutic agents, but some exhibit non-specific binding to off-target proteins and other biomolecules. Such polyreactive antibodies compromise screening pipelines, lead to incorrect and irreproducible experimental results, and are generally intractable for clinical development. Here, we design a set of experiments using a diverse naïve synthetic camelid antibody fragment (nanobody) library to enable machine learning models to accurately assess polyreactivity from protein sequence (AUC > 0.8). Moreover, our models provide quantitative scoring metrics that predict the effect of amino acid substitutions on polyreactivity. We experimentally test our models’ performance on three independent nanobody scaffolds, where over 90% of predicted substitutions successfully reduced polyreactivity. Importantly, the models allow us to diminish the polyreactivity of an angiotensin II type I receptor antagonist nanobody, without compromising its functional properties. We provide a companion web-server that offers a straightforward means of predicting polyreactivity and polyreactivity-reducing mutations for any given nanobody sequence.

Suggested Citation

  • Edward P. Harvey & Jung-Eun Shin & Meredith A. Skiba & Genevieve R. Nemeth & Joseph D. Hurley & Alon Wellner & Ada Y. Shaw & Victor G. Miranda & Joseph K. Min & Chang C. Liu & Debora S. Marks & Andrew, 2022. "An in silico method to assess antibody fragment polyreactivity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35276-4
    DOI: 10.1038/s41467-022-35276-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35276-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35276-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longxing Cao & Brian Coventry & Inna Goreshnik & Buwei Huang & William Sheffler & Joon Sung Park & Kevin M. Jude & Iva Marković & Rameshwar U. Kadam & Koen H. G. Verschueren & Kenneth Verstraete & Sco, 2022. "Design of protein-binding proteins from the target structure alone," Nature, Nature, vol. 605(7910), pages 551-560, May.
    2. Hugo Mouquet & Johannes F. Scheid & Markus J. Zoller & Michelle Krogsgaard & Rene G. Ott & Shetha Shukair & Maxim N. Artyomov & John Pietzsch & Mark Connors & Florencia Pereyra & Bruce D. Walker & Dav, 2010. "Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation," Nature, Nature, vol. 467(7315), pages 591-595, September.
    3. Andrew Bradbury & Andreas Plückthun, 2015. "Reproducibility: Standardize antibodies used in research," Nature, Nature, vol. 518(7537), pages 27-29, February.
    4. Monya Baker, 2015. "Reproducibility crisis: Blame it on the antibodies," Nature, Nature, vol. 521(7552), pages 274-276, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linsley Kelly & Keith E. Maier & Amy Yan & Matthew Levy, 2021. "A comparative analysis of cell surface targeting aptamers," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Thomas W. Linsky & Kyle Noble & Autumn R. Tobin & Rachel Crow & Lauren Carter & Jeffrey L. Urbauer & David Baker & Eva-Maria Strauch, 2022. "Sampling of structure and sequence space of small protein folds," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Bettina Bert & Céline Heinl & Justyna Chmielewska & Franziska Schwarz & Barbara Grune & Andreas Hensel & Matthias Greiner & Gilbert Schönfelder, 2019. "Refining animal research: The Animal Study Registry," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-12, October.
    4. Buwei Huang & Brian Coventry & Marta T. Borowska & Dimitrios C. Arhontoulis & Marc Exposit & Mohamad Abedi & Kevin M. Jude & Samer F. Halabiya & Aza Allen & Cami Cordray & Inna Goreshnik & Maggie Ahlr, 2024. "De novo design of miniprotein antagonists of cytokine storm inducers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Claudia L. Driscoll & Anthony H. Keeble & Mark R. Howarth, 2024. "SpyMask enables combinatorial assembly of bispecific binders," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. James M. Fulcher & Lye Meng Markillie & Hugh D. Mitchell & Sarah M. Williams & Kristin M. Engbrecht & David J. Degnan & Lisa M. Bramer & Ronald J. Moore & William B. Chrisler & Joshua Cantlon-Bruce & , 2024. "Parallel measurement of transcriptomes and proteomes from same single cells using nanodroplet splitting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    8. Adrian C. D. Fuchs, 2023. "Specific, sensitive and quantitative protein detection by in-gel fluorescence," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Nathaniel R. Bennett & Brian Coventry & Inna Goreshnik & Buwei Huang & Aza Allen & Dionne Vafeados & Ying Po Peng & Justas Dauparas & Minkyung Baek & Lance Stewart & Frank DiMaio & Steven Munck & Savv, 2023. "Improving de novo protein binder design with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Susanne Prokop & Péter Ábrányi-Balogh & Benjámin Barti & Márton Vámosi & Miklós Zöldi & László Barna & Gabriella M. Urbán & András Dávid Tóth & Barna Dudok & Attila Egyed & Hui Deng & Gian Marco Leggi, 2021. "PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    11. Xinchen Lv & Yuanyuan Zhang & Ke Sun & Qi Yang & Jianhua Luo & Liang Tao & Peilong Lu, 2024. "De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Sasha B. Ebrahimi & Devleena Samanta, 2023. "Engineering protein-based therapeutics through structural and chemical design," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Ai Vu Hong & Laurence Suel & Eva Petat & Auriane Dubois & Pierre-Romain Le Brun & Nicolas Guerchet & Philippe Veron & Jérôme Poupiot & Isabelle Richard, 2024. "An engineered AAV targeting integrin alpha V beta 6 presents improved myotropism across species," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Qishan Liang & Tao Yu & Eric Kofman & Pratibha Jagannatha & Kevin Rhine & Brian A. Yee & Kevin D. Corbett & Gene W. Yeo, 2024. "High-sensitivity in situ capture of endogenous RNA-protein interactions in fixed cells and primary tissues," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35276-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.