IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57192-z.html
   My bibliography  Save this article

Design of high-affinity binders to immune modulating receptors for cancer immunotherapy

Author

Listed:
  • Wei Yang

    (University of Washington
    University of Washington)

  • Derrick R. Hicks

    (University of Washington
    University of Washington)

  • Agnidipta Ghosh

    (Bronx)

  • Tristin A. Schwartze

    (University of Pittsburgh)

  • Brian Conventry

    (University of Washington
    University of Washington)

  • Inna Goreshnik

    (University of Washington
    University of Washington)

  • Aza Allen

    (University of Washington
    University of Washington)

  • Samer F. Halabiya

    (University of Washington
    University of Washington)

  • Chan Johng Kim

    (University of Washington
    University of Washington)

  • Cynthia S. Hinck

    (University of Pittsburgh)

  • David S. Lee

    (University of Washington
    University of Washington)

  • Asim K. Bera

    (University of Washington
    University of Washington)

  • Zhe Li

    (University of Washington
    University of Washington)

  • Yujia Wang

    (University of Washington
    University of Washington)

  • Thomas Schlichthaerle

    (University of Washington
    University of Washington)

  • Longxing Cao

    (University of Washington
    University of Washington)

  • Buwei Huang

    (University of Washington
    University of Washington)

  • Sarah Garrett

    (Bronx)

  • Stacey R. Gerben

    (University of Washington
    University of Washington)

  • Stephen Rettie

    (University of Washington
    University of Washington)

  • Piper Heine

    (University of Washington
    University of Washington)

  • Analisa Murray

    (University of Washington
    University of Washington)

  • Natasha Edman

    (University of Washington
    University of Washington)

  • Lauren Carter

    (University of Washington
    University of Washington)

  • Lance Stewart

    (University of Washington
    University of Washington)

  • Steven C. Almo

    (Bronx)

  • Andrew P. Hinck

    (University of Pittsburgh)

  • David Baker

    (University of Washington
    University of Washington
    University of Washington)

Abstract

Immune receptors have emerged as critical therapeutic targets for cancer immunotherapy. Designed protein binders can have high affinity, modularity, and stability and hence could be attractive components of protein therapeutics directed against these receptors, but traditional Rosetta based protein binder methods using small globular scaffolds have difficulty achieving high affinity on convex targets. Here we describe the development of helical concave scaffolds tailored to the convex target sites typically involved in immune receptor interactions. We employed these scaffolds to design proteins that bind to TGFβRII, CTLA-4, and PD-L1, achieving low nanomolar to picomolar affinities and potent biological activity following experimental optimization. Co-crystal structures of the TGFβRII and CTLA-4 binders in complex with their respective receptors closely match the design models. These designs should have considerable utility for downstream therapeutic applications.

Suggested Citation

  • Wei Yang & Derrick R. Hicks & Agnidipta Ghosh & Tristin A. Schwartze & Brian Conventry & Inna Goreshnik & Aza Allen & Samer F. Halabiya & Chan Johng Kim & Cynthia S. Hinck & David S. Lee & Asim K. Ber, 2025. "Design of high-affinity binders to immune modulating receptors for cancer immunotherapy," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57192-z
    DOI: 10.1038/s41467-025-57192-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57192-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57192-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph L. Watson & David Juergens & Nathaniel R. Bennett & Brian L. Trippe & Jason Yim & Helen E. Eisenach & Woody Ahern & Andrew J. Borst & Robert J. Ragotte & Lukas F. Milles & Basile I. M. Wicky & , 2023. "De novo design of protein structure and function with RFdiffusion," Nature, Nature, vol. 620(7976), pages 1089-1100, August.
    2. Longxing Cao & Brian Coventry & Inna Goreshnik & Buwei Huang & William Sheffler & Joon Sung Park & Kevin M. Jude & Iva Marković & Rameshwar U. Kadam & Koen H. G. Verschueren & Kenneth Verstraete & Sco, 2022. "Design of protein-binding proteins from the target structure alone," Nature, Nature, vol. 605(7910), pages 551-560, May.
    3. Wei Yang & Derrick R. Hicks & Agnidipta Ghosh & Tristin A. Schwartze & Brian Conventry & Inna Goreshnik & Aza Allen & Samer F. Halabiya & Chan Johng Kim & Cynthia S. Hinck & David S. Lee & Asim K. Ber, 2025. "Design of high-affinity binders to immune modulating receptors for cancer immunotherapy," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    5. Nathaniel R. Bennett & Brian Coventry & Inna Goreshnik & Buwei Huang & Aza Allen & Dionne Vafeados & Ying Po Peng & Justas Dauparas & Minkyung Baek & Lance Stewart & Frank DiMaio & Steven Munck & Savv, 2023. "Improving de novo protein binder design with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. TJ Brunette & Fabio Parmeggiani & Po-Ssu Huang & Gira Bhabha & Damian C. Ekiert & Susan E. Tsutakawa & Greg L. Hura & John A. Tainer & David Baker, 2015. "Exploring the repeat protein universe through computational protein design," Nature, Nature, vol. 528(7583), pages 580-584, December.
    7. Arvind Pillai & Abbas Idris & Annika Philomin & Connor Weidle & Rebecca Skotheim & Philip J. Y. Leung & Adam Broerman & Cullen Demakis & Andrew J. Borst & Florian Praetorius & David Baker, 2024. "De novo design of allosterically switchable protein assemblies," Nature, Nature, vol. 632(8026), pages 911-920, August.
    8. Aaron Chevalier & Daniel-Adriano Silva & Gabriel J. Rocklin & Derrick R. Hicks & Renan Vergara & Patience Murapa & Steffen M. Bernard & Lu Zhang & Kwok-Ho Lam & Guorui Yao & Christopher D. Bahl & Shin, 2017. "Massively parallel de novo protein design for targeted therapeutics," Nature, Nature, vol. 550(7674), pages 74-79, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Yang & Derrick R. Hicks & Agnidipta Ghosh & Tristin A. Schwartze & Brian Conventry & Inna Goreshnik & Aza Allen & Samer F. Halabiya & Chan Johng Kim & Cynthia S. Hinck & David S. Lee & Asim K. Ber, 2025. "Design of high-affinity binders to immune modulating receptors for cancer immunotherapy," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucien F. Krapp & Fernando A. Meireles & Luciano A. Abriata & Jean Devillard & Sarah Vacle & Maria J. Marcaida & Matteo Dal Peraro, 2024. "Context-aware geometric deep learning for protein sequence design," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Nathaniel R. Bennett & Brian Coventry & Inna Goreshnik & Buwei Huang & Aza Allen & Dionne Vafeados & Ying Po Peng & Justas Dauparas & Minkyung Baek & Lance Stewart & Frank DiMaio & Steven Munck & Savv, 2023. "Improving de novo protein binder design with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    4. Chloe S. Adams & Hyojin Kim & Abigail E. Burtner & Dong Sun Lee & Craig Dobbins & Cameron Criswell & Brian Coventry & Adri Tran-Pearson & Ho Min Kim & Neil P. King, 2025. "De novo design of protein minibinder agonists of TLR3," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Aika Iwama & Ryoji Kise & Hiroaki Akasaka & Fumiya K. Sano & Hidetaka S. Oshima & Asuka Inoue & Wataru Shihoya & Osamu Nureki, 2024. "Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Claudia L. Driscoll & Anthony H. Keeble & Mark R. Howarth, 2024. "SpyMask enables combinatorial assembly of bispecific binders," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Ryan D. Kibler & Sangmin Lee & Madison A. Kennedy & Basile I. M. Wicky & Stella M. Lai & Marius M. Kostelic & Ann Carr & Xinting Li & Cameron M. Chow & Tina K. Nguyen & Lauren Carter & Vicki H. Wysock, 2024. "Design of pseudosymmetric protein hetero-oligomers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Patrick Bryant & Atharva Kelkar & Andrea Guljas & Cecilia Clementi & Frank Noé, 2024. "Structure prediction of protein-ligand complexes from sequence information with Umol," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Sasha B. Ebrahimi & Devleena Samanta, 2023. "Engineering protein-based therapeutics through structural and chemical design," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Edin Muratspahić & Kristine Deibler & Jianming Han & Nataša Tomašević & Kirtikumar B. Jadhav & Aina-Leonor Olivé-Marti & Nadine Hochrainer & Roland Hellinger & Johannes Koehbach & Jonathan F. Fay & Mo, 2023. "Design and structural validation of peptide–drug conjugate ligands of the kappa-opioid receptor," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Thomas W. Linsky & Kyle Noble & Autumn R. Tobin & Rachel Crow & Lauren Carter & Jeffrey L. Urbauer & David Baker & Eva-Maria Strauch, 2022. "Sampling of structure and sequence space of small protein folds," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Wei Lu & Jixian Zhang & Weifeng Huang & Ziqiao Zhang & Xiangyu Jia & Zhenyu Wang & Leilei Shi & Chengtao Li & Peter G. Wolynes & Shuangjia Zheng, 2024. "DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Meghana Kshirsagar & Artur Meller & Ian R. Humphreys & Samuel Sledzieski & Yixi Xu & Rahul Dodhia & Eric Horvitz & Bonnie Berger & Gregory R. Bowman & Juan Lavista Ferres & David Baker & Minkyung Baek, 2025. "Rapid and accurate prediction of protein homo-oligomer symmetry using Seq2Symm," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Chase R. Freschlin & Sarah A. Fahlberg & Pete Heinzelman & Philip A. Romero, 2024. "Neural network extrapolation to distant regions of the protein fitness landscape," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Enrico Orsi & Lennart Schada von Borzyskowski & Stephan Noack & Pablo I. Nikel & Steffen N. Lindner, 2024. "Automated in vivo enzyme engineering accelerates biocatalyst optimization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Sophia Vincoff & Shrey Goel & Kseniia Kholina & Rishab Pulugurta & Pranay Vure & Pranam Chatterjee, 2025. "FusOn-pLM: a fusion oncoprotein-specific language model via adjusted rate masking," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Simon d’Oelsnitz & Daniel J. Diaz & Wantae Kim & Daniel J. Acosta & Tyler L. Dangerfield & Mason W. Schechter & Matthew B. Minus & James R. Howard & Hannah Do & James M. Loy & Hal S. Alper & Y. Jessie, 2024. "Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Fabian Sesterhenn & Che Yang & Jaume Bonet & Johannes T. Cramer & Xiaolin Wen & Yimeng Wang & Chi I. Chiang & Luciano Andres Abriata & Iga Kucharska & Giacomo Castoro & Sabrina S. Vollers & Marie Gall, 2020. "De novo protein design enables the precise induction of RSV-neutralizing antibodies," Post-Print hal-02677103, HAL.
    19. Xinchen Lv & Yuanyuan Zhang & Ke Sun & Qi Yang & Jianhua Luo & Liang Tao & Peilong Lu, 2024. "De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Ai Vu Hong & Laurence Suel & Eva Petat & Auriane Dubois & Pierre-Romain Le Brun & Nicolas Guerchet & Philippe Veron & Jérôme Poupiot & Isabelle Richard, 2024. "An engineered AAV targeting integrin alpha V beta 6 presents improved myotropism across species," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57192-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.