IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38147-8.html
   My bibliography  Save this article

Specific, sensitive and quantitative protein detection by in-gel fluorescence

Author

Listed:
  • Adrian C. D. Fuchs

    (Max Planck Institute for Biology)

Abstract

Recombinant proteins in complex solutions are typically detected with tag-specific antibodies in Western blots. Here we describe an antibody-free alternative in which tagged proteins are detected directly in polyacrylamide gels. For this, the highly specific protein ligase Connectase is used to selectively fuse fluorophores to target proteins carrying a recognition sequence, the CnTag. Compared to Western blots, this procedure is faster, more sensitive, offers a better signal-to-noise ratio, requires no optimization for different samples, allows more reproducible and accurate quantifications, and uses freely available reagents. With these advantages, this method represents a promising alternative to the state of the art and may facilitate studies on recombinant proteins.

Suggested Citation

  • Adrian C. D. Fuchs, 2023. "Specific, sensitive and quantitative protein detection by in-gel fluorescence," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38147-8
    DOI: 10.1038/s41467-023-38147-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38147-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38147-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Monya Baker, 2015. "Reproducibility crisis: Blame it on the antibodies," Nature, Nature, vol. 521(7552), pages 274-276, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward P. Harvey & Jung-Eun Shin & Meredith A. Skiba & Genevieve R. Nemeth & Joseph D. Hurley & Alon Wellner & Ada Y. Shaw & Victor G. Miranda & Joseph K. Min & Chang C. Liu & Debora S. Marks & Andrew, 2022. "An in silico method to assess antibody fragment polyreactivity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Bettina Bert & Céline Heinl & Justyna Chmielewska & Franziska Schwarz & Barbara Grune & Andreas Hensel & Matthias Greiner & Gilbert Schönfelder, 2019. "Refining animal research: The Animal Study Registry," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-12, October.
    3. Linsley Kelly & Keith E. Maier & Amy Yan & Matthew Levy, 2021. "A comparative analysis of cell surface targeting aptamers," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38147-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.