IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50363-4.html
   My bibliography  Save this article

High-sensitivity in situ capture of endogenous RNA-protein interactions in fixed cells and primary tissues

Author

Listed:
  • Qishan Liang

    (University of California San Diego
    University of California San Diego)

  • Tao Yu

    (University of California San Diego
    University of California San Diego
    University of California San Diego
    University of California San Diego)

  • Eric Kofman

    (University of California San Diego
    University of California San Diego
    University of California San Diego
    University of California San Diego)

  • Pratibha Jagannatha

    (University of California San Diego
    University of California San Diego
    University of California San Diego
    University of California San Diego)

  • Kevin Rhine

    (University of California San Diego
    University of California San Diego
    University of California San Diego)

  • Brian A. Yee

    (University of California San Diego
    University of California San Diego
    University of California San Diego
    University of California San Diego)

  • Kevin D. Corbett

    (University of California San Diego
    University of California San Diego
    University of California San Diego)

  • Gene W. Yeo

    (University of California San Diego
    University of California San Diego
    University of California San Diego
    University of California San Diego)

Abstract

RNA-binding proteins (RBPs) have pivotal functions in RNA metabolism, but current methods are limited in retrieving RBP-RNA interactions within endogenous biological contexts. Here, we develop INSCRIBE (IN situ Sensitive Capture of RNA-protein Interactions in Biological Environments), circumventing the challenges through in situ RNA labeling by precisely directing a purified APOBEC1-nanobody fusion to the RBP of interest. This method enables highly specific RNA-binding site identification across a diverse range of fixed biological samples such as HEK293T cells and mouse brain tissue and accurately identifies the canonical binding motifs of RBFOX2 (UGCAUG) and TDP-43 (UGUGUG) in native cellular environments. Applicable to any RBP with available primary antibodies, INSCRIBE enables sensitive capture of RBP-RNA interactions from ultra-low input equivalent to ~5 cells. The robust, versatile, and sensitive INSCRIBE workflow is particularly beneficial for precious tissues such as clinical samples, empowering the exploration of genuine RBP-RNA interactions in RNA-related disease contexts.

Suggested Citation

  • Qishan Liang & Tao Yu & Eric Kofman & Pratibha Jagannatha & Kevin Rhine & Brian A. Yee & Kevin D. Corbett & Gene W. Yeo, 2024. "High-sensitivity in situ capture of endogenous RNA-protein interactions in fixed cells and primary tissues," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50363-4
    DOI: 10.1038/s41467-024-50363-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50363-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50363-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longxing Cao & Brian Coventry & Inna Goreshnik & Buwei Huang & William Sheffler & Joon Sung Park & Kevin M. Jude & Iva Marković & Rameshwar U. Kadam & Koen H. G. Verschueren & Kenneth Verstraete & Sco, 2022. "Design of protein-binding proteins from the target structure alone," Nature, Nature, vol. 605(7910), pages 551-560, May.
    2. Meeli Mullari & Nicolas Fossat & Niels H. Skotte & Andrea Asenjo-Martinez & David T. Humphreys & Jens Bukh & Agnete Kirkeby & Troels K. H. Scheel & Michael L. Nielsen, 2023. "Characterising the RNA-binding protein atlas of the mammalian brain uncovers RBM5 misregulation in mouse models of Huntington’s disease," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Hugo C. Medina-Munoz & Eric Kofman & Pratibha Jagannatha & Evan A. Boyle & Tao Yu & Krysten L. Jones & Jasmine R. Mueller & Grace D. Lykins & Andrew T. Doudna & Samuel S. Park & Steven M. Blue & Brodi, 2024. "Expanded palette of RNA base editors for comprehensive RBP-RNA interactome studies," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas W. Linsky & Kyle Noble & Autumn R. Tobin & Rachel Crow & Lauren Carter & Jeffrey L. Urbauer & David Baker & Eva-Maria Strauch, 2022. "Sampling of structure and sequence space of small protein folds," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Edward P. Harvey & Jung-Eun Shin & Meredith A. Skiba & Genevieve R. Nemeth & Joseph D. Hurley & Alon Wellner & Ada Y. Shaw & Victor G. Miranda & Joseph K. Min & Chang C. Liu & Debora S. Marks & Andrew, 2022. "An in silico method to assess antibody fragment polyreactivity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Buwei Huang & Brian Coventry & Marta T. Borowska & Dimitrios C. Arhontoulis & Marc Exposit & Mohamad Abedi & Kevin M. Jude & Samer F. Halabiya & Aza Allen & Cami Cordray & Inna Goreshnik & Maggie Ahlr, 2024. "De novo design of miniprotein antagonists of cytokine storm inducers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Claudia L. Driscoll & Anthony H. Keeble & Mark R. Howarth, 2024. "SpyMask enables combinatorial assembly of bispecific binders," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    6. Nathaniel R. Bennett & Brian Coventry & Inna Goreshnik & Buwei Huang & Aza Allen & Dionne Vafeados & Ying Po Peng & Justas Dauparas & Minkyung Baek & Lance Stewart & Frank DiMaio & Steven Munck & Savv, 2023. "Improving de novo protein binder design with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Xinchen Lv & Yuanyuan Zhang & Ke Sun & Qi Yang & Jianhua Luo & Liang Tao & Peilong Lu, 2024. "De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Sasha B. Ebrahimi & Devleena Samanta, 2023. "Engineering protein-based therapeutics through structural and chemical design," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Ai Vu Hong & Laurence Suel & Eva Petat & Auriane Dubois & Pierre-Romain Le Brun & Nicolas Guerchet & Philippe Veron & Jérôme Poupiot & Isabelle Richard, 2024. "An engineered AAV targeting integrin alpha V beta 6 presents improved myotropism across species," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50363-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.