IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52582-1.html
   My bibliography  Save this article

De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants

Author

Listed:
  • Xinchen Lv

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake Institute for Advanced Study)

  • Yuanyuan Zhang

    (Westlake University
    Westlake University
    Hangzhou Medical College Affiliated People’s Hospital)

  • Ke Sun

    (Westlake University
    Westlake Institute for Advanced Study)

  • Qi Yang

    (Westlake University
    Westlake University)

  • Jianhua Luo

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake University)

  • Liang Tao

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake University)

  • Peilong Lu

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake Institute for Advanced Study)

Abstract

Clostridioides difficile toxin B (TcdB) is the key virulence factor accounting for C. difficile infection-associated symptoms. Effectively neutralizing different TcdB variants with a universal solution poses a significant challenge. Here we present the de novo design and characterization of pan-specific mini-protein binders against major TcdB subtypes. Our design successfully binds to the first receptor binding interface (RBI-1) of the varied TcdB subtypes, exhibiting affinities ranging from 20 pM to 10 nM. The cryo-electron microscopy (cryo-EM) structures of the mini protein binder in complex with TcdB1 and TcdB4 are consistent with the computational design models. The engineered and evolved variants of the mini-protein binder and chondroitin sulfate proteoglycan 4 (CSPG4), another natural receptor that binds to the second RBI (RBI-2) of TcdB, better neutralize major TcdB variants both in cells and in vivo, as demonstrated by the colon-loop assay using female mice. Our findings provide valuable starting points for the development of therapeutics targeting C. difficile infections (CDI).

Suggested Citation

  • Xinchen Lv & Yuanyuan Zhang & Ke Sun & Qi Yang & Jianhua Luo & Liang Tao & Peilong Lu, 2024. "De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52582-1
    DOI: 10.1038/s41467-024-52582-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52582-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52582-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Chen & Ji Zeng & Zheng Liu & Hatim Thaker & Siyu Wang & Songhai Tian & Jie Zhang & Liang Tao & Craig B. Gutierrez & Li Xing & Ralf Gerhard & Lan Huang & Min Dong & Rongsheng Jin, 2021. "Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Longxing Cao & Brian Coventry & Inna Goreshnik & Buwei Huang & William Sheffler & Joon Sung Park & Kevin M. Jude & Iva Marković & Rameshwar U. Kadam & Koen H. G. Verschueren & Kenneth Verstraete & Sco, 2022. "Design of protein-binding proteins from the target structure alone," Nature, Nature, vol. 605(7910), pages 551-560, May.
    3. Aaron Chevalier & Daniel-Adriano Silva & Gabriel J. Rocklin & Derrick R. Hicks & Renan Vergara & Patience Murapa & Steffen M. Bernard & Lu Zhang & Kwok-Ho Lam & Guorui Yao & Christopher D. Bahl & Shin, 2017. "Massively parallel de novo protein design for targeted therapeutics," Nature, Nature, vol. 550(7674), pages 74-79, October.
    4. Sarah A. Kuehne & Stephen T. Cartman & John T. Heap & Michelle L. Kelly & Alan Cockayne & Nigel P. Minton, 2010. "The role of toxin A and toxin B in Clostridium difficile infection," Nature, Nature, vol. 467(7316), pages 711-713, October.
    5. Liang Tao & Jie Zhang & Paul Meraner & Alessio Tovaglieri & Xiaoqian Wu & Ralf Gerhard & Xinjun Zhang & William B. Stallcup & Ji Miao & Xi He & Julian G. Hurdle & David T. Breault & Abraham L. Brass &, 2016. "Frizzled proteins are colonic epithelial receptors for C. difficile toxin B," Nature, Nature, vol. 538(7625), pages 350-355, October.
    6. Songhai Tian & Xiaozhe Xiong & Ji Zeng & Siyu Wang & Benjamin Jean-Marie Tremblay & Peng Chen & Baohua Chen & Min Liu & Pengsheng Chen & Kuanwei Sheng & Daniel Zeve & Wanshu Qi & David T. Breault & Cé, 2022. "Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruoyu Zhou & Liuqing He & Jiahao Zhang & Xiaofeng Zhang & Yanyan Li & Xiechao Zhan & Liang Tao, 2024. "Molecular basis of TMPRSS2 recognition by Paeniclostridium sordellii hemorrhagic toxin," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Songhai Tian & Xiaozhe Xiong & Ji Zeng & Siyu Wang & Benjamin Jean-Marie Tremblay & Peng Chen & Baohua Chen & Min Liu & Pengsheng Chen & Kuanwei Sheng & Daniel Zeve & Wanshu Qi & David T. Breault & Cé, 2022. "Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Xingxing Li & Liuqing He & Jianhua Luo & Yangling Zheng & Yao Zhou & Danyang Li & Yuanyuan Zhang & Zhenrui Pan & Yanyan Li & Liang Tao, 2022. "Paeniclostridium sordellii hemorrhagic toxin targets TMPRSS2 to induce colonic epithelial lesions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    5. Nathaniel R. Bennett & Brian Coventry & Inna Goreshnik & Buwei Huang & Aza Allen & Dionne Vafeados & Ying Po Peng & Justas Dauparas & Minkyung Baek & Lance Stewart & Frank DiMaio & Steven Munck & Savv, 2023. "Improving de novo protein binder design with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Sasha B. Ebrahimi & Devleena Samanta, 2023. "Engineering protein-based therapeutics through structural and chemical design," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Thomas W. Linsky & Kyle Noble & Autumn R. Tobin & Rachel Crow & Lauren Carter & Jeffrey L. Urbauer & David Baker & Eva-Maria Strauch, 2022. "Sampling of structure and sequence space of small protein folds," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Edward P. Harvey & Jung-Eun Shin & Meredith A. Skiba & Genevieve R. Nemeth & Joseph D. Hurley & Alon Wellner & Ada Y. Shaw & Victor G. Miranda & Joseph K. Min & Chang C. Liu & Debora S. Marks & Andrew, 2022. "An in silico method to assess antibody fragment polyreactivity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Buwei Huang & Brian Coventry & Marta T. Borowska & Dimitrios C. Arhontoulis & Marc Exposit & Mohamad Abedi & Kevin M. Jude & Samer F. Halabiya & Aza Allen & Cami Cordray & Inna Goreshnik & Maggie Ahlr, 2024. "De novo design of miniprotein antagonists of cytokine storm inducers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Ashleigh S. Paparella & Briana L. Aboulache & Rajesh K. Harijan & Kathryn S. Potts & Peter C. Tyler & Vern L. Schramm, 2021. "Inhibition of Clostridium difficile TcdA and TcdB toxins with transition state analogues," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    11. Lola Rueda Ruzafa & José Luis Cedillo & Arik J. Hone, 2021. "Nicotinic Acetylcholine Receptor Involvement in Inflammatory Bowel Disease and Interactions with Gut Microbiota," IJERPH, MDPI, vol. 18(3), pages 1-19, January.
    12. Claudia L. Driscoll & Anthony H. Keeble & Mark R. Howarth, 2024. "SpyMask enables combinatorial assembly of bispecific binders," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Zengping Duan & Chuilian Kong & Shihui Fan & Chuanliu Wu, 2024. "Triscysteine disulfide-directing motifs enabling design and discovery of multicyclic peptide binders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Lucien F. Krapp & Fernando A. Meireles & Luciano A. Abriata & Jean Devillard & Sarah Vacle & Maria J. Marcaida & Matteo Dal Peraro, 2024. "Context-aware geometric deep learning for protein sequence design," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Fabian Sesterhenn & Che Yang & Jaume Bonet & Johannes T. Cramer & Xiaolin Wen & Yimeng Wang & Chi I. Chiang & Luciano Andres Abriata & Iga Kucharska & Giacomo Castoro & Sabrina S. Vollers & Marie Gall, 2020. "De novo protein design enables the precise induction of RSV-neutralizing antibodies," Post-Print hal-02677103, HAL.
    16. Ai Vu Hong & Laurence Suel & Eva Petat & Auriane Dubois & Pierre-Romain Le Brun & Nicolas Guerchet & Philippe Veron & Jérôme Poupiot & Isabelle Richard, 2024. "An engineered AAV targeting integrin alpha V beta 6 presents improved myotropism across species," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Alexander Belyy & Philipp Heilen & Philine Hagel & Oliver Hofnagel & Stefan Raunser, 2023. "Structure and activation mechanism of the Makes caterpillars floppy 1 toxin," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Qishan Liang & Tao Yu & Eric Kofman & Pratibha Jagannatha & Kevin Rhine & Brian A. Yee & Kevin D. Corbett & Gene W. Yeo, 2024. "High-sensitivity in situ capture of endogenous RNA-protein interactions in fixed cells and primary tissues," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Edin Muratspahić & Kristine Deibler & Jianming Han & Nataša Tomašević & Kirtikumar B. Jadhav & Aina-Leonor Olivé-Marti & Nadine Hochrainer & Roland Hellinger & Johannes Koehbach & Jonathan F. Fay & Mo, 2023. "Design and structural validation of peptide–drug conjugate ligands of the kappa-opioid receptor," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52582-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.