IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38328-5.html
   My bibliography  Save this article

Improving de novo protein binder design with deep learning

Author

Listed:
  • Nathaniel R. Bennett

    (University of Washington
    University of Washington
    University of Washington)

  • Brian Coventry

    (University of Washington
    University of Washington
    University of Washington)

  • Inna Goreshnik

    (University of Washington
    University of Washington)

  • Buwei Huang

    (University of Washington
    University of Washington
    University of Washington)

  • Aza Allen

    (University of Washington
    University of Washington)

  • Dionne Vafeados

    (University of Washington
    University of Washington)

  • Ying Po Peng

    (University of Washington
    University of Washington)

  • Justas Dauparas

    (University of Washington
    University of Washington)

  • Minkyung Baek

    (University of Washington
    University of Washington)

  • Lance Stewart

    (University of Washington
    University of Washington)

  • Frank DiMaio

    (University of Washington
    University of Washington)

  • Steven Munck

    (VIB-UGent Center for Inflammation Research
    Ghent University)

  • Savvas N. Savvides

    (VIB-UGent Center for Inflammation Research
    Ghent University)

  • David Baker

    (University of Washington
    University of Washington
    University of Washington)

Abstract

Recently it has become possible to de novo design high affinity protein binding proteins from target structural information alone. There is, however, considerable room for improvement as the overall design success rate is low. Here, we explore the augmentation of energy-based protein binder design using deep learning. We find that using AlphaFold2 or RoseTTAFold to assess the probability that a designed sequence adopts the designed monomer structure, and the probability that this structure binds the target as designed, increases design success rates nearly 10-fold. We find further that sequence design using ProteinMPNN rather than Rosetta considerably increases computational efficiency.

Suggested Citation

  • Nathaniel R. Bennett & Brian Coventry & Inna Goreshnik & Buwei Huang & Aza Allen & Dionne Vafeados & Ying Po Peng & Justas Dauparas & Minkyung Baek & Lance Stewart & Frank DiMaio & Steven Munck & Savv, 2023. "Improving de novo protein binder design with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38328-5
    DOI: 10.1038/s41467-023-38328-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38328-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38328-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Longxing Cao & Brian Coventry & Inna Goreshnik & Buwei Huang & William Sheffler & Joon Sung Park & Kevin M. Jude & Iva Marković & Rameshwar U. Kadam & Koen H. G. Verschueren & Kenneth Verstraete & Sco, 2022. "Design of protein-binding proteins from the target structure alone," Nature, Nature, vol. 605(7910), pages 551-560, May.
    3. Ivan Anishchenko & Samuel J. Pellock & Tamuka M. Chidyausiku & Theresa A. Ramelot & Sergey Ovchinnikov & Jingzhou Hao & Khushboo Bafna & Christoffer Norn & Alex Kang & Asim K. Bera & Frank DiMaio & La, 2021. "De novo protein design by deep network hallucination," Nature, Nature, vol. 600(7889), pages 547-552, December.
    4. Steven Munck & Mathias Provost & Michiko Kurikawa & Ikuko Omori & Junko Mukohyama & Jan Felix & Yehudi Bloch & Omar Abdel-Wahab & J. Fernando Bazan & Akihide Yoshimi & Savvas N. Savvides, 2021. "Structural basis of cytokine-mediated activation of ALK family receptors," Nature, Nature, vol. 600(7887), pages 143-147, December.
    5. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    6. Daniel-Adriano Silva & Shawn Yu & Umut Y. Ulge & Jamie B. Spangler & Kevin M. Jude & Carlos Labão-Almeida & Lestat R. Ali & Alfredo Quijano-Rubio & Mikel Ruterbusch & Isabel Leung & Tamara Biary & Ste, 2019. "De novo design of potent and selective mimics of IL-2 and IL-15," Nature, Nature, vol. 565(7738), pages 186-191, January.
    7. Aaron Chevalier & Daniel-Adriano Silva & Gabriel J. Rocklin & Derrick R. Hicks & Renan Vergara & Patience Murapa & Steffen M. Bernard & Lu Zhang & Kwok-Ho Lam & Guorui Yao & Christopher D. Bahl & Shin, 2017. "Massively parallel de novo protein design for targeted therapeutics," Nature, Nature, vol. 550(7674), pages 74-79, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucien F. Krapp & Fernando A. Meireles & Luciano A. Abriata & Jean Devillard & Sarah Vacle & Maria J. Marcaida & Matteo Dal Peraro, 2024. "Context-aware geometric deep learning for protein sequence design," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    2. Claudia L. Driscoll & Anthony H. Keeble & Mark R. Howarth, 2024. "SpyMask enables combinatorial assembly of bispecific binders," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Tamuka M. Chidyausiku & Soraia R. Mendes & Jason C. Klima & Marta Nadal & Ulrich Eckhard & Jorge Roel-Touris & Scott Houliston & Tibisay Guevara & Hugh K. Haddox & Adam Moyer & Cheryl H. Arrowsmith & , 2022. "De novo design of immunoglobulin-like domains," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Lucien F. Krapp & Fernando A. Meireles & Luciano A. Abriata & Jean Devillard & Sarah Vacle & Maria J. Marcaida & Matteo Dal Peraro, 2024. "Context-aware geometric deep learning for protein sequence design," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Sasha B. Ebrahimi & Devleena Samanta, 2023. "Engineering protein-based therapeutics through structural and chemical design," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Ai Vu Hong & Laurence Suel & Eva Petat & Auriane Dubois & Pierre-Romain Le Brun & Nicolas Guerchet & Philippe Veron & Jérôme Poupiot & Isabelle Richard, 2024. "An engineered AAV targeting integrin alpha V beta 6 presents improved myotropism across species," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Edin Muratspahić & Kristine Deibler & Jianming Han & Nataša Tomašević & Kirtikumar B. Jadhav & Aina-Leonor Olivé-Marti & Nadine Hochrainer & Roland Hellinger & Johannes Koehbach & Jonathan F. Fay & Mo, 2023. "Design and structural validation of peptide–drug conjugate ligands of the kappa-opioid receptor," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    12. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38328-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.