IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35069-9.html
   My bibliography  Save this article

G protein-coupled receptor 151 regulates glucose metabolism and hepatic gluconeogenesis

Author

Listed:
  • Ewa Bielczyk-Maczynska

    (Stanford University School of Medicine
    Stanford University School of Medicine
    Stanford University School of Medicine)

  • Meng Zhao

    (Stanford University School of Medicine
    Stanford University School of Medicine
    Stanford University School of Medicine)

  • Peter-James H. Zushin

    (University of California at Berkeley)

  • Theresia M. Schnurr

    (Stanford University School of Medicine
    Stanford University School of Medicine
    Stanford University School of Medicine)

  • Hyun-Jung Kim

    (Stanford University School of Medicine)

  • Jiehan Li

    (Stanford University School of Medicine
    Stanford University School of Medicine
    Stanford University School of Medicine)

  • Pratima Nallagatla

    (Stanford University School of Medicine)

  • Panjamaporn Sangwung

    (Stanford University School of Medicine
    Stanford University School of Medicine
    Stanford University School of Medicine)

  • Chong Y. Park

    (Stanford University School of Medicine
    Stanford University School of Medicine
    Stanford University School of Medicine)

  • Cameron Cornn

    (Stanford University School of Medicine)

  • Andreas Stahl

    (University of California at Berkeley)

  • Katrin J. Svensson

    (Stanford University School of Medicine
    Stanford University School of Medicine
    Stanford University School of Medicine)

  • Joshua W. Knowles

    (Stanford University School of Medicine
    Stanford University School of Medicine
    Stanford University School of Medicine
    Stanford University School of Medicine)

Abstract

Human genetics has been instrumental in identification of genetic variants linked to type 2 diabetes. Recently a rare, putative loss-of-function mutation in the orphan G-protein coupled receptor 151 (GPR151) was found to be associated with lower odds ratio for type 2 diabetes, but the mechanism behind this association has remained elusive. Here we show that Gpr151 is a fasting- and glucagon-responsive hepatic gene which regulates hepatic gluconeogenesis. Gpr151 ablation in mice leads to suppression of hepatic gluconeogenesis genes and reduced hepatic glucose production in response to pyruvate. Importantly, the restoration of hepatic Gpr151 levels in the Gpr151 knockout mice reverses the reduced hepatic glucose production. In this work, we establish a previously unknown role of Gpr151 in the liver that provides an explanation to the lowered type 2 diabetes risk in individuals with nonsynonymous mutations in GPR151.

Suggested Citation

  • Ewa Bielczyk-Maczynska & Meng Zhao & Peter-James H. Zushin & Theresia M. Schnurr & Hyun-Jung Kim & Jiehan Li & Pratima Nallagatla & Panjamaporn Sangwung & Chong Y. Park & Cameron Cornn & Andreas Stahl, 2022. "G protein-coupled receptor 151 regulates glucose metabolism and hepatic gluconeogenesis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35069-9
    DOI: 10.1038/s41467-022-35069-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35069-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35069-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephan Herzig & Fanxin Long & Ulupi S. Jhala & Susan Hedrick & Rebecca Quinn & Anton Bauer & Dorothea Rudolph & Gunther Schutz & Cliff Yoon & Pere Puigserver & Bruce Spiegelman & Marc Montminy, 2001. "Correction: CREB regulates hepatic gluconeogenesis through the coactivator PGC-1," Nature, Nature, vol. 413(6856), pages 652-652, October.
    2. Pere Puigserver & James Rhee & Jerry Donovan & Christopher J. Walkey & J. Cliff Yoon & Francesco Oriente & Yukari Kitamura & Jennifer Altomonte & Hengjiang Dong & Domenico Accili & Bruce M. Spiegelman, 2003. "Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction," Nature, Nature, vol. 423(6939), pages 550-555, May.
    3. Russell A. Miller & Qingwei Chu & Jianxin Xie & Marc Foretz & Benoit Viollet & Morris J. Birnbaum, 2013. "Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP," Nature, Nature, vol. 494(7436), pages 256-260, February.
    4. Stephan Herzig & Fanxin Long & Ulupi S. Jhala & Susan Hedrick & Rebecca Quinn & Anton Bauer & Dorothea Rudolph & Gunther Schutz & Cliff Yoon & Pere Puigserver & Bruce Spiegelman & Marc Montminy, 2001. "CREB regulates hepatic gluconeogenesis through the coactivator PGC-1," Nature, Nature, vol. 413(6852), pages 179-183, September.
    5. Allan Gurtan & John Dominy & Shareef Khalid & Linh Vong & Shari Caplan & Treeve Currie & Sean Richards & Lindsey Lamarche & Daniel Denning & Diana Shpektor & Anastasia Gurinovich & Asif Rasheed & Shah, 2022. "Analyzing human knockouts to validate GPR151 as a therapeutic target for reduction of body mass index," PLOS Genetics, Public Library of Science, vol. 18(4), pages 1-13, April.
    6. Evan D. Rosen & Bruce M. Spiegelman, 2006. "Adipocytes as regulators of energy balance and glucose homeostasis," Nature, Nature, vol. 444(7121), pages 847-853, December.
    7. Yosuke Tanigawa & Jiehan Li & Johanne M. Justesen & Heiko Horn & Matthew Aguirre & Christopher DeBoever & Chris Chang & Balasubramanian Narasimhan & Kasper Lage & Trevor Hastie & Chong Y. Park & Gill , 2019. "Components of genetic associations across 2,138 phenotypes in the UK Biobank highlight adipocyte biology," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Storm N. S. Reid & Joung-Hyun Park & Yunsook Kim & Yi Sub Kwak & Byeong Hwan Jeon, 2020. "In Vitro and In Vivo Effects of Fermented Oyster-Derived Lactate on Exercise Endurance Indicators in Mice," IJERPH, MDPI, vol. 17(23), pages 1-17, November.
    2. Yue Liu & Yue Yang & Chenying Xu & Jianxing Liu & Jiale Chen & Guoqing Li & Bin Huang & Yi Pan & Yanfeng Zhang & Qiong Wei & Stephen J. Pandol & Fangfang Zhang & Ling Li & Liang Jin, 2023. "Circular RNA circGlis3 protects against islet β-cell dysfunction and apoptosis in obesity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Yuta Ozaki & Koji Ohashi & Naoya Otaka & Hiroshi Kawanishi & Tomonobu Takikawa & Lixin Fang & Kunihiko Takahara & Minako Tatsumi & Sohta Ishihama & Mikito Takefuji & Katsuhiro Kato & Yuuki Shimizu & Y, 2023. "Myonectin protects against skeletal muscle dysfunction in male mice through activation of AMPK/PGC1α pathway," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Simeon R. Mihaylov & Lydia M. Castelli & Ya-Hui Lin & Aytac Gül & Nikita Soni & Christopher Hastings & Helen R. Flynn & Oana Păun & Mark J. Dickman & Ambrosius P. Snijders & Robert Goldstone & Oliver, 2023. "The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Pengfei Xu & Yingjie Zhang & Xinghao Jiang & Junyan Li & Liying Song & Mir Hasson Khoso & Yunye Liu & Qiang Wu & Guiping Ren & Deshan Li, 2016. "Canine Fibroblast Growth Factor 21 Ameliorates Hyperglycemia Associated with Inhibiting Hepatic Gluconeogenesis and Improving Pancreatic Beta-Cell Survival in Diabetic Mice and Dogs," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    6. Huanqing Gao & Liang Zhou & Yiming Zhong & Zhen Ding & Sixiong Lin & Xiaoting Hou & Xiaoqian Zhou & Jie Shao & Fan Yang & Xuenong Zou & Huiling Cao & Guozhi Xiao, 2022. "Kindlin-2 haploinsufficiency protects against fatty liver by targeting Foxo1 in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Peter Zhukovsky & Earvin S. Tio & Gillian Coughlan & David A. Bennett & Yanling Wang & Timothy J. Hohman & Diego A. Pizzagalli & Benoit H. Mulsant & Aristotle N. Voineskos & Daniel Felsky, 2024. "Genetic influences on brain and cognitive health and their interactions with cardiovascular conditions and depression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Melkaye G Melka & Michal Abrahamowicz & Gabriel T Leonard & Michel Perron & Louis Richer & Suzanne Veillette & Daniel Gaudet & Tomáš Paus & Zdenka Pausova, 2013. "Clustering of the Metabolic Syndrome Components in Adolescence: Role of Visceral Fat," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-7, December.
    9. Guanghao Qi & Surya B. Chhetri & Debashree Ray & Diptavo Dutta & Alexis Battle & Samsiddhi Bhattacharjee & Nilanjan Chatterjee, 2024. "Genome-wide large-scale multi-trait analysis characterizes global patterns of pleiotropy and unique trait-specific variants," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Ravikanth Nanduri & Takashi Furusawa & Alexei Lobanov & Bing He & Carol Xie & Kimia Dadkhah & Michael C. Kelly & Oksana Gavrilova & Frank J. Gonzalez & Michael Bustin, 2022. "Epigenetic regulation of white adipose tissue plasticity and energy metabolism by nucleosome binding HMGN proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Meiqi Fan & Eun-Kyung Kim & Young-Jin Choi & Yujiao Tang & Sang-Ho Moon, 2019. "The Role of Momordica charantia in Resisting Obesity," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    12. André A. Weber & Xiaojing Yang & Elvira Mennillo & Jeffrey Ding & Jeramie D. Watrous & Mohit Jain & Shujuan Chen & Michael Karin & Robert H. Tukey, 2022. "Lactational delivery of Triclosan promotes non-alcoholic fatty liver disease in newborn mice," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Caitlin E. Carey & Rebecca Shafee & Robbee Wedow & Amanda Elliott & Duncan S. Palmer & John Compitello & Masahiro Kanai & Liam Abbott & Patrick Schultz & Konrad J. Karczewski & Samuel C. Bryant & Caro, 2024. "Principled distillation of UK Biobank phenotype data reveals underlying structure in human variation," Nature Human Behaviour, Nature, vol. 8(8), pages 1599-1615, August.
    14. Gregory Alexander Raciti & Francesca Fiory & Michele Campitelli & Antonella Desiderio & Rosa Spinelli & Michele Longo & Cecilia Nigro & Giacomo Pepe & Eduardo Sommella & Pietro Campiglia & Pietro Form, 2018. "Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-20, March.
    15. Song-Yang Zhang & Tony K. T. Lam, 2022. "Metabolic regulation by the intestinal metformin-AMPK axis," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    16. Yosuke Tanigawa & Junyang Qian & Guhan Venkataraman & Johanne Marie Justesen & Ruilin Li & Robert Tibshirani & Trevor Hastie & Manuel A Rivas, 2022. "Significant sparse polygenic risk scores across 813 traits in UK Biobank," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-21, March.
    17. YunSook Jung & Ji-Hye Kim & Ah-Ra Shin & Keun-Bae Song & Atsuo Amano & Youn-Hee Choi, 2023. "Association of Adiposity with Periodontitis and Metabolic Syndrome: From the Third National Health and Nutrition Examination Survey of United States," IJERPH, MDPI, vol. 20(3), pages 1-9, January.
    18. Stephen J. Gaudino & Ankita Singh & Huakang Huang & Jyothi Padiadpu & Makheni Jean-Pierre & Cody Kempen & Tej Bahadur & Kiyoshi Shiomitsu & Richard Blumberg & Kenneth R. Shroyer & Semir Beyaz & Natali, 2024. "Intestinal IL-22RA1 signaling regulates intrinsic and systemic lipid and glucose metabolism to alleviate obesity-associated disorders," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Motohiro Sekiya & Kenta Kainoh & Takehito Sugasawa & Ryunosuke Yoshino & Takatsugu Hirokawa & Hiroaki Tokiwa & Shogo Nakano & Satoru Nagatoishi & Kouhei Tsumoto & Yoshinori Takeuchi & Takafumi Miyamot, 2021. "The transcriptional corepressor CtBP2 serves as a metabolite sensor orchestrating hepatic glucose and lipid homeostasis," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35069-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.