IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i10p1720-d1490040.html
   My bibliography  Save this article

Effects of Supplementation with Essential Fatty Acids and Conjugated Linoleic Acids on Muscle Structure and Fat Deposition in Lactating Holstein Cows

Author

Listed:
  • Cheng Xiao

    (Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
    Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
    Faculty of Agricultural and Environmental Sciences, University of Rostock, 18057 Rostock, Germany)

  • Elke Albrecht

    (Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany)

  • Dirk Dannenberger

    (Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany)

  • Weibo Kong

    (Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany)

  • Hao Gu

    (Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany)

  • Harald M. Hammon

    (Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany)

  • Steffen Maak

    (Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany)

Abstract

High-yielding dairy cows need diets that meet their energy demand and contain sufficient essential nutrients such as n-3 fatty acids (FAs). Conjugated linoleic acid (CLA) is able to relieve the energy metabolism, but common corn silage and concentrate-based diets contain insufficient amounts of essential fatty acids (EFA). Abomasal infusion was used in the current study to supplement cows from 9 weeks antepartum to 9 weeks postpartum with either coconut oil (CTRL, n = 8), EFA ( n = 9), or conjugated linoleic acid (CLA, n = 9), or a combination of both (EFA + CLA, n = 10). The study focused on the effects of FAs on peripheral tissues, such as longissimus muscle (MLD) and adipose tissues, which were harvested after slaughter. Fatty acid composition, muscle fiber and fat cell morphology, muscle fiber type transition, and gene expression were analyzed. Supplemented FAs and their metabolites were increased ( p < 0.05) in MLD and intermuscular fat (INTF) but not in subcutaneous fat (SCF). The intramuscular fat content and gene expression of ACACA and FASN were increased in CLA-supplemented cows ( p < 0.05). Supplementation did not affect the muscle fiber size and fiber type composition. Supplemented CLA had more effects than EFA, improving the energy balance of cows accompanied with increased triglyceride formation and storage.

Suggested Citation

  • Cheng Xiao & Elke Albrecht & Dirk Dannenberger & Weibo Kong & Hao Gu & Harald M. Hammon & Steffen Maak, 2024. "Effects of Supplementation with Essential Fatty Acids and Conjugated Linoleic Acids on Muscle Structure and Fat Deposition in Lactating Holstein Cows," Agriculture, MDPI, vol. 14(10), pages 1-18, September.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1720-:d:1490040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/10/1720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/10/1720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Evan D. Rosen & Bruce M. Spiegelman, 2006. "Adipocytes as regulators of energy balance and glucose homeostasis," Nature, Nature, vol. 444(7121), pages 847-853, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melkaye G Melka & Michal Abrahamowicz & Gabriel T Leonard & Michel Perron & Louis Richer & Suzanne Veillette & Daniel Gaudet & Tomáš Paus & Zdenka Pausova, 2013. "Clustering of the Metabolic Syndrome Components in Adolescence: Role of Visceral Fat," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-7, December.
    2. Gregory Alexander Raciti & Francesca Fiory & Michele Campitelli & Antonella Desiderio & Rosa Spinelli & Michele Longo & Cecilia Nigro & Giacomo Pepe & Eduardo Sommella & Pietro Campiglia & Pietro Form, 2018. "Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-20, March.
    3. Ravikanth Nanduri & Takashi Furusawa & Alexei Lobanov & Bing He & Carol Xie & Kimia Dadkhah & Michael C. Kelly & Oksana Gavrilova & Frank J. Gonzalez & Michael Bustin, 2022. "Epigenetic regulation of white adipose tissue plasticity and energy metabolism by nucleosome binding HMGN proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Meiqi Fan & Eun-Kyung Kim & Young-Jin Choi & Yujiao Tang & Sang-Ho Moon, 2019. "The Role of Momordica charantia in Resisting Obesity," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    5. YunSook Jung & Ji-Hye Kim & Ah-Ra Shin & Keun-Bae Song & Atsuo Amano & Youn-Hee Choi, 2023. "Association of Adiposity with Periodontitis and Metabolic Syndrome: From the Third National Health and Nutrition Examination Survey of United States," IJERPH, MDPI, vol. 20(3), pages 1-9, January.
    6. Stephen J. Gaudino & Ankita Singh & Huakang Huang & Jyothi Padiadpu & Makheni Jean-Pierre & Cody Kempen & Tej Bahadur & Kiyoshi Shiomitsu & Richard Blumberg & Kenneth R. Shroyer & Semir Beyaz & Natali, 2024. "Intestinal IL-22RA1 signaling regulates intrinsic and systemic lipid and glucose metabolism to alleviate obesity-associated disorders," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Ewa Bielczyk-Maczynska & Meng Zhao & Peter-James H. Zushin & Theresia M. Schnurr & Hyun-Jung Kim & Jiehan Li & Pratima Nallagatla & Panjamaporn Sangwung & Chong Y. Park & Cameron Cornn & Andreas Stahl, 2022. "G protein-coupled receptor 151 regulates glucose metabolism and hepatic gluconeogenesis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Motohiro Sekiya & Kenta Kainoh & Takehito Sugasawa & Ryunosuke Yoshino & Takatsugu Hirokawa & Hiroaki Tokiwa & Shogo Nakano & Satoru Nagatoishi & Kouhei Tsumoto & Yoshinori Takeuchi & Takafumi Miyamot, 2021. "The transcriptional corepressor CtBP2 serves as a metabolite sensor orchestrating hepatic glucose and lipid homeostasis," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1720-:d:1490040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.