IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0155598.html
   My bibliography  Save this article

Canine Fibroblast Growth Factor 21 Ameliorates Hyperglycemia Associated with Inhibiting Hepatic Gluconeogenesis and Improving Pancreatic Beta-Cell Survival in Diabetic Mice and Dogs

Author

Listed:
  • Pengfei Xu
  • Yingjie Zhang
  • Xinghao Jiang
  • Junyan Li
  • Liying Song
  • Mir Hasson Khoso
  • Yunye Liu
  • Qiang Wu
  • Guiping Ren
  • Deshan Li

Abstract

Diabetes mellitus is a common endocrinopathy in dog. Fibroblast growth factor 21 (FGF-21) is a secreted protein, which is involved in glucose homeostasis. We speculate that the recombinant canine FGF-21 (cFGF-21) has the potential to become a powerful therapeutics to treat canine diabetes. The cFGF-21 gene was cloned and expressed in E. coli Rosetta (DE3). After purification, a cFGF-21 protein with the purity exceeding 95% was obtained. Mouse 3T3-L1 adipocytes and type 1 diabetic mice/dogs induced by STZ were used to examine the biological activity of cFGF-21 in vitro and in vivo, respectively. Results showed that cFGF-21 stimulated glucose uptake in adipocytes significantly in a dose-dependent manner, and reduced plasma glucose significantly in diabetic mice/dogs. After treatment with cFGF-21, the serum insulin level, glycosylated hemoglobin (HbA1c) level and the expressions of the hepatic gluconeogenesis genes (glucose-6-phosphatase, G6Pase and phosphoenolpyruvate carboxykinase, PCK) of the diabetic mice/dogs were attenuated significantly. In the mouse experiment, we also found that the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the expression of suppressor of cytokine signaling 3 (SOCS3) were up-regulated significantly in the livers after treatment. Histopathological and immunohistochemical results showed that treatment with cFGF-21 promoted recovery of pancreatic islets from STZ-induced apoptosis. Besides, we also found that treatment with cFGF-21 protected liver against STZ or hyperglycemia induced damage and the mechanism of this action associated with inhibiting oxidative stress. In conclusion, cFGF-21 represents a promising candidate for canine diabetes therapeutics. The mechanism of cFGF-21 ameliorates hyperglycemia associated with inhibiting hepatic gluconeogenesis by regulation of STAT3 signal pathway and improving pancreatic beta-cell survival.

Suggested Citation

  • Pengfei Xu & Yingjie Zhang & Xinghao Jiang & Junyan Li & Liying Song & Mir Hasson Khoso & Yunye Liu & Qiang Wu & Guiping Ren & Deshan Li, 2016. "Canine Fibroblast Growth Factor 21 Ameliorates Hyperglycemia Associated with Inhibiting Hepatic Gluconeogenesis and Improving Pancreatic Beta-Cell Survival in Diabetic Mice and Dogs," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0155598
    DOI: 10.1371/journal.pone.0155598
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155598
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0155598&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0155598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephan Herzig & Fanxin Long & Ulupi S. Jhala & Susan Hedrick & Rebecca Quinn & Anton Bauer & Dorothea Rudolph & Gunther Schutz & Cliff Yoon & Pere Puigserver & Bruce Spiegelman & Marc Montminy, 2001. "Correction: CREB regulates hepatic gluconeogenesis through the coactivator PGC-1," Nature, Nature, vol. 413(6856), pages 652-652, October.
    2. Stephan Herzig & Fanxin Long & Ulupi S. Jhala & Susan Hedrick & Rebecca Quinn & Anton Bauer & Dorothea Rudolph & Gunther Schutz & Cliff Yoon & Pere Puigserver & Bruce Spiegelman & Marc Montminy, 2001. "CREB regulates hepatic gluconeogenesis through the coactivator PGC-1," Nature, Nature, vol. 413(6852), pages 179-183, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuta Ozaki & Koji Ohashi & Naoya Otaka & Hiroshi Kawanishi & Tomonobu Takikawa & Lixin Fang & Kunihiko Takahara & Minako Tatsumi & Sohta Ishihama & Mikito Takefuji & Katsuhiro Kato & Yuuki Shimizu & Y, 2023. "Myonectin protects against skeletal muscle dysfunction in male mice through activation of AMPK/PGC1α pathway," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Storm N. S. Reid & Joung-Hyun Park & Yunsook Kim & Yi Sub Kwak & Byeong Hwan Jeon, 2020. "In Vitro and In Vivo Effects of Fermented Oyster-Derived Lactate on Exercise Endurance Indicators in Mice," IJERPH, MDPI, vol. 17(23), pages 1-17, November.
    3. Yue Liu & Yue Yang & Chenying Xu & Jianxing Liu & Jiale Chen & Guoqing Li & Bin Huang & Yi Pan & Yanfeng Zhang & Qiong Wei & Stephen J. Pandol & Fangfang Zhang & Ling Li & Liang Jin, 2023. "Circular RNA circGlis3 protects against islet β-cell dysfunction and apoptosis in obesity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Simeon R. Mihaylov & Lydia M. Castelli & Ya-Hui Lin & Aytac Gül & Nikita Soni & Christopher Hastings & Helen R. Flynn & Oana Păun & Mark J. Dickman & Ambrosius P. Snijders & Robert Goldstone & Oliver, 2023. "The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Ewa Bielczyk-Maczynska & Meng Zhao & Peter-James H. Zushin & Theresia M. Schnurr & Hyun-Jung Kim & Jiehan Li & Pratima Nallagatla & Panjamaporn Sangwung & Chong Y. Park & Cameron Cornn & Andreas Stahl, 2022. "G protein-coupled receptor 151 regulates glucose metabolism and hepatic gluconeogenesis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0155598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.