IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33587-0.html
   My bibliography  Save this article

Flexibility of functional neuronal assemblies supports human memory

Author

Listed:
  • Gray Umbach

    (University of California San Francisco)

  • Ryan Tan

    (University of Texas Southwestern)

  • Joshua Jacobs

    (Columbia University)

  • Brad E. Pfeiffer

    (University of Texas Southwestern)

  • Bradley Lega

    (University of Texas Southwestern)

Abstract

Episodic memories, or consciously accessible memories of unique events, represent a key aspect of human cognition. Evidence from rodent models suggests that the neural representation of these complex memories requires cooperative firing of groups of neurons on short time scales, organized by gamma oscillations. These co-firing groups, termed “neuronal assemblies,” represent a fundamental neurophysiological unit supporting memory. Using microelectrode data from neurosurgical patients, we identify neuronal assemblies in the human MTL and show that they exhibit consistent organization in their firing pattern based on gamma phase information. We connect these properties to memory performance across recording sessions. Finally, we describe how human neuronal assemblies flexibly adjust over longer time scales. Our findings provide key evidence linking assemblies to human episodic memory for the first time.

Suggested Citation

  • Gray Umbach & Ryan Tan & Joshua Jacobs & Brad E. Pfeiffer & Bradley Lega, 2022. "Flexibility of functional neuronal assemblies supports human memory," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33587-0
    DOI: 10.1038/s41467-022-33587-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33587-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33587-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johannes Niediek & Jan Boström & Christian E Elger & Florian Mormann, 2016. "Reliable Analysis of Single-Unit Recordings from the Human Brain under Noisy Conditions: Tracking Neurons over Hours," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-26, December.
    2. Thomas Hainmueller & Marlene Bartos, 2018. "Parallel emergence of stable and dynamic memory engrams in the hippocampus," Nature, Nature, vol. 558(7709), pages 292-296, June.
    3. Kenneth D. Harris & Jozsef Csicsvari & Hajime Hirase & George Dragoi & György Buzsáki, 2003. "Organization of cell assemblies in the hippocampus," Nature, Nature, vol. 424(6948), pages 552-556, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamara Gedankien & Ryan Joseph Tan & Salman Ehtesham Qasim & Haley Moore & David McDonagh & Joshua Jacobs & Bradley Lega, 2023. "Acetylcholine modulates the temporal dynamics of human theta oscillations during memory," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Hannah Muysers & Hung-Ling Chen & Johannes Hahn & Shani Folschweiller & Torfi Sigurdsson & Jonas-Frederic Sauer & Marlene Bartos, 2024. "A persistent prefrontal reference frame across time and task rules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Marcel Bausch & Johannes Niediek & Thomas P. Reber & Sina Mackay & Jan Boström & Christian E. Elger & Florian Mormann, 2021. "Concept neurons in the human medial temporal lobe flexibly represent abstract relations between concepts," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Remus Oşan & Liping Zhu & Shy Shoham & Joe Z Tsien, 2007. "Subspace Projection Approaches to Classification and Visualization of Neural Network-Level Encoding Patterns," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-14, May.
    7. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Paul J. Lamothe-Molina & Andreas Franzelin & Lennart Beck & Dong Li & Lea Auksutat & Tim Fieblinger & Laura Laprell & Joachim Alhbeck & Christine E. Gee & Matthias Kneussel & Andreas K. Engel & Claus , 2022. "ΔFosB accumulation in hippocampal granule cells drives cFos pattern separation during spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    10. Luca D. Kolibius & Frederic Roux & George Parish & Marije Wal & Mircea Plas & Ramesh Chelvarajah & Vijay Sawlani & David T. Rollings & Johannes D. Lang & Stephanie Gollwitzer & Katrin Walther & Rüdige, 2023. "Hippocampal neurons code individual episodic memories in humans," Nature Human Behaviour, Nature, vol. 7(11), pages 1968-1979, November.
    11. Asako Noguchi & Roman Huszár & Shota Morikawa & György Buzsáki & Yuji Ikegaya, 2022. "Inhibition allocates spikes during hippocampal ripples," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Giovanni Diana & Thomas T J Sainsbury & Martin P Meyer, 2019. "Bayesian inference of neuronal assemblies," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-31, October.
    13. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Layton Lamsam & Brett Gu & Mingli Liang & George Sun & Kamren J. Khan & Kevin N. Sheth & Lawrence J. Hirsch & Christopher Pittenger & Alfred P. Kaye & John H. Krystal & Eyiyemisi C. Damisah, 2024. "The human claustrum tracks slow waves during sleep," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Carina Curto & Vladimir Itskov, 2008. "Cell Groups Reveal Structure of Stimulus Space," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-13, October.
    16. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Omer Hazon & Victor H. Minces & David P. Tomàs & Surya Ganguli & Mark J. Schnitzer & Pablo E. Jercog, 2022. "Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Heather C. Ratigan & Seetha Krishnan & Shai Smith & Mark E. J. Sheffield, 2023. "A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Sara Mahallati & James C Bezdek & Milos R Popovic & Taufik A Valiante, 2019. "Cluster tendency assessment in neuronal spike data," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-29, November.
    20. Alexandra T. Keinath & Coralie-Anne Mosser & Mark P. Brandon, 2022. "The representation of context in mouse hippocampus is preserved despite neural drift," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33587-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.