IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42429-6.html
   My bibliography  Save this article

A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination

Author

Listed:
  • Heather C. Ratigan

    (University of Chicago
    University of Chicago
    University of Chicago)

  • Seetha Krishnan

    (University of Chicago
    University of Chicago)

  • Shai Smith

    (University of Chicago
    University of Chicago)

  • Mark E. J. Sheffield

    (University of Chicago
    University of Chicago
    University of Chicago
    University of Chicago)

Abstract

The adaptive regulation of fear memories is a crucial neural function that prevents inappropriate fear expression. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic nucleus reuniens (NR) is necessary to extinguish contextual fear and innervates hippocampal CA1. However, the role of the NR-CA1 pathway in contextual fear is unknown. We developed a head-restrained virtual reality CFC paradigm, and demonstrate that mice can acquire and extinguish context-dependent fear responses. We found that inhibiting the NR-CA1 pathway following CFC lengthens the duration of fearful freezing epochs, increases fear generalization, and delays fear extinction. Using in vivo imaging, we recorded NR-axons innervating CA1 and found that NR-axons become tuned to fearful freezing following CFC. We conclude that the NR-CA1 pathway actively suppresses fear by disrupting contextual fear memory retrieval in CA1 during fearful freezing behavior, a process that also reduces fear generalization and accelerates extinction.

Suggested Citation

  • Heather C. Ratigan & Seetha Krishnan & Shai Smith & Mark E. J. Sheffield, 2023. "A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42429-6
    DOI: 10.1038/s41467-023-42429-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42429-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42429-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Can Dong & Antoine D. Madar & Mark E. J. Sheffield, 2021. "Distinct place cell dynamics in CA1 and CA3 encode experience in new environments," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Karthik R. Ramanathan & Jingji Jin & Thomas F. Giustino & Martin R. Payne & Stephen Maren, 2018. "Prefrontal projections to the thalamic nucleus reuniens mediate fear extinction," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Xu Liu & Steve Ramirez & Petti T. Pang & Corey B. Puryear & Arvind Govindarajan & Karl Deisseroth & Susumu Tonegawa, 2012. "Optogenetic stimulation of a hippocampal engram activates fear memory recall," Nature, Nature, vol. 484(7394), pages 381-385, April.
    4. Woong Bin Kim & Jun-Hyeong Cho, 2020. "Encoding of contextual fear memory in hippocampal–amygdala circuit," Nature Communications, Nature, vol. 11(1), pages 1-22, December.
    5. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Khaled Ghandour & Noriaki Ohkawa & Chi Chung Alan Fung & Hirotaka Asai & Yoshito Saitoh & Takashi Takekawa & Reiko Okubo-Suzuki & Shingo Soya & Hirofumi Nishizono & Mina Matsuo & Makoto Osanai & Masaa, 2019. "Orchestrated ensemble activities constitute a hippocampal memory engram," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    7. Maanasa Jayachandran & Tatiana D. Viena & Andy Garcia & Abdiel Vasallo Veliz & Sofia Leyva & Valentina Roldan & Robert P. Vertes & Timothy A. Allen, 2023. "Nucleus reuniens transiently synchronizes memory networks at beta frequencies," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Priyamvada Rajasethupathy & Sethuraman Sankaran & James H. Marshel & Christina K. Kim & Emily Ferenczi & Soo Yeun Lee & Andre Berndt & Charu Ramakrishnan & Anna Jaffe & Maisie Lo & Conor Liston & Karl, 2015. "Projections from neocortex mediate top-down control of memory retrieval," Nature, Nature, vol. 526(7575), pages 653-659, October.
    9. Thomas Hainmueller & Marlene Bartos, 2018. "Parallel emergence of stable and dynamic memory engrams in the hippocampus," Nature, Nature, vol. 558(7709), pages 292-296, June.
    10. Dmitriy Aronov & Rhino Nevers & David W. Tank, 2017. "Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit," Nature, Nature, vol. 543(7647), pages 719-722, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Liu & Arron F. Hall & Dong V. Wang, 2024. "Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Paul J. Lamothe-Molina & Andreas Franzelin & Lennart Beck & Dong Li & Lea Auksutat & Tim Fieblinger & Laura Laprell & Joachim Alhbeck & Christine E. Gee & Matthias Kneussel & Andreas K. Engel & Claus , 2022. "ΔFosB accumulation in hippocampal granule cells drives cFos pattern separation during spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Thomas Hainmueller & Aurore Cazala & Li-Wen Huang & Marlene Bartos, 2024. "Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Michael S. Totty & Tuğçe Tuna & Karthik R. Ramanathan & Jingji Jin & Shaun E. Peters & Stephen Maren, 2023. "Thalamic nucleus reuniens coordinates prefrontal-hippocampal synchrony to suppress extinguished fear," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Joseph I. Terranova & Jun Yokose & Hisayuki Osanai & Sachie K. Ogawa & Takashi Kitamura, 2023. "Systems consolidation induces multiple memory engrams for a flexible recall strategy in observational fear memory in male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Zihao Chen & Yechao Han & Zheng Ma & Xinnian Wang & Surui Xu & Yong Tang & Alexei L. Vyssotski & Bailu Si & Yang Zhan, 2024. "A prefrontal-thalamic circuit encodes social information for social recognition," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Hannah Muysers & Hung-Ling Chen & Johannes Hahn & Shani Folschweiller & Torfi Sigurdsson & Jonas-Frederic Sauer & Marlene Bartos, 2024. "A persistent prefrontal reference frame across time and task rules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    14. Babak Shahbaba & Lingge Li & Forest Agostinelli & Mansi Saraf & Keiland W. Cooper & Derenik Haghverdian & Gabriel A. Elias & Pierre Baldi & Norbert J. Fortin, 2022. "Hippocampal ensembles represent sequential relationships among an extended sequence of nonspatial events," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Nicolas Cazin & Martin Llofriu Alonso & Pablo Scleidorovich Chiodi & Tatiana Pelc & Bruce Harland & Alfredo Weitzenfeld & Jean-Marc Fellous & Peter Ford Dominey, 2019. "Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-32, July.
    16. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    17. Ruijie Li & Junjie Huang & Longhui Li & Zhikai Zhao & Susu Liang & Shanshan Liang & Meng Wang & Xiang Liao & Jing Lyu & Zhenqiao Zhou & Sibo Wang & Wenjun Jin & Haiyang Chen & Damaris Holder & Hongban, 2023. "Holistic bursting cells store long-term memory in auditory cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Maanasa Jayachandran & Tatiana D. Viena & Andy Garcia & Abdiel Vasallo Veliz & Sofia Leyva & Valentina Roldan & Robert P. Vertes & Timothy A. Allen, 2023. "Nucleus reuniens transiently synchronizes memory networks at beta frequencies," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Xiaocen Fan & Jiachen Song & Chaonan Ma & Yanbo Lv & Feifei Wang & Lan Ma & Xing Liu, 2022. "Noradrenergic signaling mediates cortical early tagging and storage of remote memory," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Arita Silapetere & Songhwan Hwang & Yusaku Hontani & Rodrigo G. Fernandez Lahore & Jens Balke & Francisco Velazquez Escobar & Martijn Tros & Patrick E. Konold & Rainer Matis & Roberta Croce & Peter J., 2022. "QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42429-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.