IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v558y2018i7709d10.1038_s41586-018-0191-2.html
   My bibliography  Save this article

Parallel emergence of stable and dynamic memory engrams in the hippocampus

Author

Listed:
  • Thomas Hainmueller

    (University of Freiburg
    University of Freiburg
    University of Freiburg)

  • Marlene Bartos

    (University of Freiburg)

Abstract

During our daily life, we depend on memories of past experiences to plan future behaviour. These memories are represented by the activity of specific neuronal groups or ‘engrams’1,2. Neuronal engrams are assembled during learning by synaptic modification, and engram reactivation represents the memorized experience 1 . Engrams of conscious memories are initially stored in the hippocampus for several days and then transferred to cortical areas 2 . In the dentate gyrus of the hippocampus, granule cells transform rich inputs from the entorhinal cortex into a sparse output, which is forwarded to the highly interconnected pyramidal cell network in hippocampal area CA3 3 . This process is thought to support pattern separation 4 (but see refs. 5,6). CA3 pyramidal neurons project to CA1, the hippocampal output region. Consistent with the idea of transient memory storage in the hippocampus, engrams in CA1 and CA2 do not stabilize over time7–10. Nevertheless, reactivation of engrams in the dentate gyrus can induce recall of artificial memories even after weeks 2 . Reconciliation of this apparent paradox will require recordings from dentate gyrus granule cells throughout learning, which has so far not been performed for more than a single day6,11,12. Here, we use chronic two-photon calcium imaging in head-fixed mice performing a multiple-day spatial memory task in a virtual environment to record neuronal activity in all major hippocampal subfields. Whereas pyramidal neurons in CA1–CA3 show precise and highly context-specific, but continuously changing, representations of the learned spatial sceneries in our behavioural paradigm, granule cells in the dentate gyrus have a spatial code that is stable over many days, with low place- or context-specificity. Our results suggest that synaptic weights along the hippocampal trisynaptic loop are constantly reassigned to support the formation of dynamic representations in downstream hippocampal areas based on a stable code provided by the dentate gyrus.

Suggested Citation

  • Thomas Hainmueller & Marlene Bartos, 2018. "Parallel emergence of stable and dynamic memory engrams in the hippocampus," Nature, Nature, vol. 558(7709), pages 292-296, June.
  • Handle: RePEc:nat:nature:v:558:y:2018:i:7709:d:10.1038_s41586-018-0191-2
    DOI: 10.1038/s41586-018-0191-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0191-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0191-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Gray Umbach & Ryan Tan & Joshua Jacobs & Brad E. Pfeiffer & Bradley Lega, 2022. "Flexibility of functional neuronal assemblies supports human memory," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Thomas Hainmueller & Aurore Cazala & Li-Wen Huang & Marlene Bartos, 2024. "Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Hannah Muysers & Hung-Ling Chen & Johannes Hahn & Shani Folschweiller & Torfi Sigurdsson & Jonas-Frederic Sauer & Marlene Bartos, 2024. "A persistent prefrontal reference frame across time and task rules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Woo-Hyun Cho & Kyungchul Noh & Byung Hun Lee & Ellane Barcelon & Sang Beom Jun & Hye Yoon Park & Sung Joong Lee, 2022. "Hippocampal astrocytes modulate anxiety-like behavior," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Weilun Sun & Ilseob Choi & Stoyan Stoyanov & Oleg Senkov & Evgeni Ponimaskin & York Winter & Janelle M. P. Pakan & Alexander Dityatev, 2021. "Context value updating and multidimensional neuronal encoding in the retrosplenial cortex," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    8. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Ruy Gómez-Ocádiz & Massimiliano Trippa & Chun-Lei Zhang & Lorenzo Posani & Simona Cocco & Rémi Monasson & Christoph Schmidt-Hieber, 2022. "A synaptic signal for novelty processing in the hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. M. Agustina Frechou & Sunaina S. Martin & Kelsey D. McDermott & Evan A. Huaman & Şölen Gökhan & Wolfgang A. Tomé & Ruben Coen-Cagli & J. Tiago Gonçalves, 2024. "Adult neurogenesis improves spatial information encoding in the mouse hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Alicia Hernández-Vivanco & Nuria Cano-Adamuz & Alberto Sánchez-Aguilera & Alba González-Alonso & Alberto Rodríguez-Fernández & Íñigo Azcoitia & Liset Menendez de la Prida & Pablo Méndez, 2022. "Sex-specific regulation of inhibition and network activity by local aromatase in the mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Heather C. Ratigan & Seetha Krishnan & Shai Smith & Mark E. J. Sheffield, 2023. "A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    14. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Alexandra T. Keinath & Coralie-Anne Mosser & Mark P. Brandon, 2022. "The representation of context in mouse hippocampus is preserved despite neural drift," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Paul J. Lamothe-Molina & Andreas Franzelin & Lennart Beck & Dong Li & Lea Auksutat & Tim Fieblinger & Laura Laprell & Joachim Alhbeck & Christine E. Gee & Matthias Kneussel & Andreas K. Engel & Claus , 2022. "ΔFosB accumulation in hippocampal granule cells drives cFos pattern separation during spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:558:y:2018:i:7709:d:10.1038_s41586-018-0191-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.