IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33044-y.html
   My bibliography  Save this article

In situ analysis of nanoparticle soft corona and dynamic evolution

Author

Listed:
  • Didar Baimanov

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Peking University
    University of Chinese Academy of Sciences)

  • Jing Wang

    (Peking University)

  • Jun Zhang

    (University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ke Liu

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yalin Cong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xiaomeng Shi

    (Peking University)

  • Xiaohui Zhang

    (Peking University)

  • Yufeng Li

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xiumin Li

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Rongrong Qiao

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yuliang Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    GBA Research Innovation Institute for Nanotechnology
    Chinese Academy of Medical Sciences)

  • Yunlong Zhou

    (University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health)

  • Liming Wang

    (Chinese Academy of Sciences
    Peking University
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Chunying Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    GBA Research Innovation Institute for Nanotechnology
    Chinese Academy of Medical Sciences)

Abstract

How soft corona, the protein corona’s outer layer, contributes to biological identity of nanomaterials is largely because capturing protein composition of the soft corona in situ remains challenging. We herein develop an in situ Fishing method that can monitor the dynamic formation of protein corona on ultra-small chiral Cu2S nanoparticles (NPs) allowing us to directly separate and identify the corona protein composition. Our method detects spatiotemporal processes in the evolution of hard and soft coronas on chiral NPs, revealing subtle differences in NP − protein interactions even within several minutes. This study highlights the importance of in situ and dynamic analysis of soft/hard corona, provides insights into the role of soft corona in mediating biological responses of NPs, and offers a universal strategy to characterize soft corona to guide the rational design of biomedical nanomaterials.

Suggested Citation

  • Didar Baimanov & Jing Wang & Jun Zhang & Ke Liu & Yalin Cong & Xiaomeng Shi & Xiaohui Zhang & Yufeng Li & Xiumin Li & Rongrong Qiao & Yuliang Zhao & Yunlong Zhou & Liming Wang & Chunying Chen, 2022. "In situ analysis of nanoparticle soft corona and dynamic evolution," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33044-y
    DOI: 10.1038/s41467-022-33044-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33044-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33044-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hossein Mohammad-Beigi & Yuya Hayashi & Christina Moeslund Zeuthen & Hoda Eskandari & Carsten Scavenius & Kristian Juul-Madsen & Thomas Vorup-Jensen & Jan J. Enghild & Duncan S. Sutherland, 2020. "Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    2. Maozhong Sun & Liguang Xu & Joong Hwan Bahng & Hua Kuang & Silas Alben & Nicholas A. Kotov & Chuanlai Xu, 2017. "Intracellular localization of nanoparticle dimers by chirality reversal," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Ke Hou & Jing Zhao & Hui Wang & Bin Li & Kexin Li & Xinghua Shi & Kaiwei Wan & Jing Ai & Jiawei Lv & Dawei Wang & Qunxing Huang & Huayi Wang & Qin Cao & Shaoqin Liu & Zhiyong Tang, 2020. "Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Rui Shi & Chao Shan & Xiaomin Duan & Zhihai Chen & Peipei Liu & Jinwen Song & Tao Song & Xiaoshan Bi & Chao Han & Lianao Wu & Ge Gao & Xue Hu & Yanan Zhang & Zhou Tong & Weijin Huang & William Jun Liu, 2020. "A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2," Nature, Nature, vol. 584(7819), pages 120-124, August.
    5. Michael P. Vincent & Sharan Bobbala & Nicholas B. Karabin & Molly Frey & Yugang Liu & Justin O. Navidzadeh & Trevor Stack & Evan A. Scott, 2021. "Surface chemistry-mediated modulation of adsorbed albumin folding state specifies nanocarrier clearance by distinct macrophage subsets," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    6. Sara Sheibani & Kaustuv Basu & Ali Farnudi & Aliakbar Ashkarran & Muneyoshi Ichikawa & John F. Presley & Khanh Huy Bui & Mohammad Reza Ejtehadi & Hojatollah Vali & Morteza Mahmoudi, 2021. "Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Jiang & Qing Li & Ruofei Zhang & Jianru Li & Qianyu Lin & Jingyun Li & Xinyao Zhou & Xiyun Yan & Kelong Fan, 2023. "Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing Parkinson’s disease," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Yunqiu Miao & Lijun Li & Ying Wang & Jiangyue Wang & Yihan Zhou & Linmiao Guo & Yanqi Zhao & Di Nie & Yang Zhang & Xinxin Zhang & Yong Gan, 2024. "Regulating protein corona on nanovesicles by glycosylated polyhydroxy polymer modification for efficient drug delivery," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Akbar Ashkarran & Hassan Gharibi & Elizabeth Voke & Markita P. Landry & Amir Ata Saei & Morteza Mahmoudi, 2022. "Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yuanyuan Li & Wen Wu & Qihui Liu & Qiong Wu & Ping Ren & Xi Xi & Haiyan Liu & Jiarui Zhao & Wei Zhang & Zizhun Wang & Yuanyuan lv & Bin Tian & Shuang Sun & Jiaqi Cui & Yangyang Zhao & Jingyuan Wu & Mi, 2024. "Specific surface-modified iron oxide nanoparticles trigger complement-dependent innate and adaptive antileukaemia immunity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Ali Akbar Ashkarran & Hassan Gharibi & Seyed Amirhossein Sadeghi & Seyed Majed Modaresi & Qianyi Wang & Teng-Jui Lin & Ghafar Yerima & Ali Tamadon & Maryam Sayadi & Maryam Jafari & Zijin Lin & Danilo , 2024. "Small molecule modulation of protein corona for deep plasma proteome profiling," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Kristian Juul-Madsen & Peter Parbo & Rola Ismail & Peter L. Ovesen & Vanessa Schmidt & Lasse S. Madsen & Jacob Thyrsted & Sarah Gierl & Mihaela Breum & Agnete Larsen & Morten N. Andersen & Marina Rome, 2024. "Amyloid-β aggregates activate peripheral monocytes in mild cognitive impairment," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Zhennan Zhao & Yufeng Xie & Bin Bai & Chunliang Luo & Jingya Zhou & Weiwei Li & Yumin Meng & Linjie Li & Dedong Li & Xiaomei Li & Xiaoxiong Li & Xiaoyun Wang & Junqing Sun & Zepeng Xu & Yeping Sun & W, 2023. "Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Yanqun Wang & An Yan & Deyong Song & Maoqin Duan & Chuangchuang Dong & Jiantao Chen & Zihe Jiang & Yuanzhu Gao & Muding Rao & Jianxia Feng & Zhaoyong Zhang & Ruxi Qi & Xiaomin Ma & Hong Liu & Beibei Y, 2024. "Identification of a highly conserved neutralizing epitope within the RBD region of diverse SARS-CoV-2 variants," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Yingdan Wang & Aihua Hao & Ping Ji & Yunping Ma & Zhaoyong Zhang & Jiali Chen & Qiyu Mao & Xinyi Xiong & Palizhati Rehati & Yajie Wang & Yanqun Wang & Yumei Wen & Lu Lu & Zhenguo Chen & Jincun Zhao & , 2024. "A bispecific antibody exhibits broad neutralization against SARS-CoV-2 Omicron variants XBB.1.16, BQ.1.1 and sarbecoviruses," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Wanbo Tai & Kai Yang & Yubin Liu & Ruofan Li & Shengyong Feng & Benjie Chai & Xinyu Zhuang & Shaolong Qi & Huicheng Shi & Zhida Liu & Jiaqi Lei & Enhao Ma & Weixiao Wang & Chongyu Tian & Ting Le & Jin, 2023. "A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Tingting Li & Xiaojian Han & Chenjian Gu & Hangtian Guo & Huajun Zhang & Yingming Wang & Chao Hu & Kai Wang & Fengjiang Liu & Feiyang Luo & Yanan Zhang & Jie Hu & Wang Wang & Shenglong Li & Yanan Hao , 2021. "Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Emanuele Andreano & Ida Paciello & Giulio Pierleoni & Giuseppe Maccari & Giada Antonelli & Valentina Abbiento & Piero Pileri & Linda Benincasa & Ginevra Giglioli & Giulia Piccini & Concetta De Santi &, 2023. "mRNA vaccines and hybrid immunity use different B cell germlines against Omicron BA.4 and BA.5," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Yifan Wang & Caixuan Liu & Chao Zhang & Yanxing Wang & Qin Hong & Shiqi Xu & Zuyang Li & Yong Yang & Zhong Huang & Yao Cong, 2022. "Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Huijie Yan & Michele Cacioppo & Saad Megahed & Francesca Arcudi & Luka Đorđević & Dingcheng Zhu & Florian Schulz & Maurizio Prato & Wolfgang J. Parak & Neus Feliu, 2021. "Influence of the chirality of carbon nanodots on their interaction with proteins and cells," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    13. Andrew C. Hunt & Bastian Vögeli & Ahmed O. Hassan & Laura Guerrero & Weston Kightlinger & Danielle J. Yoesep & Antje Krüger & Madison DeWinter & Michael S. Diamond & Ashty S. Karim & Michael C. Jewett, 2023. "A rapid cell-free expression and screening platform for antibody discovery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Yu Guo & Guangshun Zhang & Qi Yang & Xiaowei Xie & Yang Lu & Xuelian Cheng & Hui Wang & Jingxi Liang & Jielin Tang & Yuxin Gao & Hang Shang & Jun Dai & Yongxia Shi & Jiaxi Zhou & Jun Zhou & Hangtian G, 2023. "Discovery and characterization of potent pan-variant SARS-CoV-2 neutralizing antibodies from individuals with Omicron breakthrough infection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Pauline Maisonnasse & Yoann Aldon & Aurélien Marc & Romain Marlin & Nathalie Dereuddre-Bosquet & Natalia A. Kuzmina & Alec W. Freyn & Jonne L. Snitselaar & Antonio Gonçalves & Tom G. Caniels & Judith , 2021. "COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three preclinical models," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Monica Neagu & Carolina Constantin & Mihaela Surcel, 2021. "Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    17. Zepeng Xu & Xinrui Kang & Pu Han & Pei Du & Linjie Li & Anqi Zheng & Chuxia Deng & Jianxun Qi & Xin Zhao & Qihui Wang & Kefang Liu & George Fu Gao, 2022. "Binding and structural basis of equine ACE2 to RBDs from SARS-CoV, SARS-CoV-2 and related coronaviruses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Shen Han & Richard Costa Marques & Johanna Simon & Anke Kaltbeitzel & Kaloian Koynov & Katharina Landfester & Volker Mailänder & Ingo Lieberwirth, 2023. "Endosomal sorting results in a selective separation of the protein corona from nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Runchu Zhao & Lili Wu & Junqing Sun & Dezhi Liu & Pu Han & Yue Gao & Yi Zhang & Yanli Xu & Xiao Qu & Han Wang & Yan Chai & Zhihai Chen & George F. Gao & Qihui Wang, 2024. "Two noncompeting human neutralizing antibodies targeting MPXV B6 show protective effects against orthopoxvirus infections," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33044-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.