IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v404y2000i6776d10.1038_35006074.html
   My bibliography  Save this article

A Drosophila model of Parkinson's disease

Author

Listed:
  • Mel B. Feany

    (Brigham and Women's Hospital and Harvard Medical School and)

  • Welcome W. Bender

    (Harvard Medical School)

Abstract

Parkinson's disease is a common neurodegenerative syndrome characterized by loss of dopaminergic neurons in the substantia nigra, formation of filamentous intraneuronal inclusions (Lewy bodies) and an extrapyramidal movement disorder. Mutations in the α-synuclein gene are linked to familial Parkinson's disease1,2 and α-synuclein accumulates in Lewy bodies and Lewy neurites3,4,5. Here we express normal and mutant forms of α-synuclein in Drosophila and produce adult-onset loss of dopaminergic neurons, filamentous intraneuronal inclusions containing α-synuclein and locomotor dysfunction. Our Drosophila model thus recapitulates the essential features of the human disorder, and makes possible a powerful genetic approach to Parkinson's disease.

Suggested Citation

  • Mel B. Feany & Welcome W. Bender, 2000. "A Drosophila model of Parkinson's disease," Nature, Nature, vol. 404(6776), pages 394-398, March.
  • Handle: RePEc:nat:nature:v:404:y:2000:i:6776:d:10.1038_35006074
    DOI: 10.1038/35006074
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35006074
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35006074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvia Varland & Rui Duarte Silva & Ine Kjosås & Alexandra Faustino & Annelies Bogaert & Maximilian Billmann & Hadi Boukhatmi & Barbara Kellen & Michael Costanzo & Adrian Drazic & Camilla Osberg & Kat, 2023. "N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
    2. Laura Hermans & Murat Kaynak & Jonas Braun & Victor Lobato Ríos & Chin-Lin Chen & Adam Friedberg & Semih Günel & Florian Aymanns & Mahmut Selman Sakar & Pavan Ramdya, 2022. "Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:404:y:2000:i:6776:d:10.1038_35006074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.