IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29645-2.html
   My bibliography  Save this article

Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing

Author

Listed:
  • Zemin Liu

    (Max Planck Institute for Intelligent Systems, Stuttgart
    ETH Zurich)

  • Meng Li

    (Max Planck Institute for Intelligent Systems, Stuttgart)

  • Xiaoguang Dong

    (Max Planck Institute for Intelligent Systems, Stuttgart
    Vanderbilt University)

  • Ziyu Ren

    (Max Planck Institute for Intelligent Systems, Stuttgart
    ETH Zurich)

  • Wenqi Hu

    (Max Planck Institute for Intelligent Systems, Stuttgart)

  • Metin Sitti

    (Max Planck Institute for Intelligent Systems, Stuttgart
    ETH Zurich
    Koç University)

Abstract

Magnetically driven wireless miniature devices have become promising recently in healthcare, information technology, and many other fields. However, they lack advanced fabrication methods to go down to micrometer length scales with heterogeneous functional materials, complex three-dimensional (3D) geometries, and 3D programmable magnetization profiles. To fill this gap, we propose a molding-integrated direct laser writing-based microfabrication approach in this study and showcase its advanced enabling capabilities with various proof-of-concept functional microdevice prototypes. Unique motions and functionalities, such as metachronal coordinated motion, fluid mixing, function reprogramming, geometrical reconfiguring, multiple degrees-of-freedom rotation, and wireless stiffness tuning are exemplary demonstrations of the versatility of this fabrication method. Such facile fabrication strategy can be applied toward building next-generation smart microsystems in healthcare, robotics, metamaterials, microfluidics, and programmable matter.

Suggested Citation

  • Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29645-2
    DOI: 10.1038/s41467-022-29645-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29645-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29645-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amirali Nojoomi & Hakan Arslan & Kwan Lee & Kyungsuk Yum, 2018. "Bioinspired 3D structures with programmable morphologies and motions," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Satoshi Kawata & Hong-Bo Sun & Tomokazu Tanaka & Kenji Takada, 2001. "Finer features for functional microdevices," Nature, Nature, vol. 412(6848), pages 697-698, August.
    3. Hen-Wei Huang & Mahmut Selman Sakar & Andrew J. Petruska & Salvador Pané & Bradley J. Nelson, 2016. "Soft micromachines with programmable motility and morphology," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    4. Tie Mei & Zhiqiang Meng & Kejie Zhao & Chang Qing Chen, 2021. "A mechanical metamaterial with reprogrammable logical functions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Heng Deng & Kianoosh Sattari & Yunchao Xie & Ping Liao & Zheng Yan & Jian Lin, 2020. "Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Tian Chen & Mark Pauly & Pedro M. Reis, 2021. "A reprogrammable mechanical metamaterial with stable memory," Nature, Nature, vol. 589(7842), pages 386-390, January.
    7. Haojian Lu & Mei Zhang & Yuanyuan Yang & Qiang Huang & Toshio Fukuda & Zuankai Wang & Yajing Shen, 2018. "A bioinspired multilegged soft millirobot that functions in both dry and wet conditions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    8. Corentin Coulais, 2021. "Mechanical memory written and read remotely," Nature, Nature, vol. 589(7842), pages 360-361, January.
    9. Jizhai Cui & Tian-Yun Huang & Zhaochu Luo & Paolo Testa & Hongri Gu & Xiang-Zhong Chen & Bradley J. Nelson & Laura J. Heyderman, 2019. "Nanomagnetic encoding of shape-morphing micromachines," Nature, Nature, vol. 575(7781), pages 164-168, November.
    10. Yoonho Kim & Hyunwoo Yuk & Ruike Zhao & Shawn A. Chester & Xuanhe Zhao, 2018. "Printing ferromagnetic domains for untethered fast-transforming soft materials," Nature, Nature, vol. 558(7709), pages 274-279, June.
    11. Wenqi Hu & Guo Zhan Lum & Massimo Mastrangeli & Metin Sitti, 2018. "Small-scale soft-bodied robot with multimodal locomotion," Nature, Nature, vol. 554(7690), pages 81-85, February.
    12. Hongri Gu & Quentin Boehler & Haoyang Cui & Eleonora Secchi & Giovanni Savorana & Carmela Marco & Simone Gervasoni & Quentin Peyron & Tian-Yun Huang & Salvador Pane & Ann M. Hirt & Daniel Ahmed & Brad, 2020. "Magnetic cilia carpets with programmable metachronal waves," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Wenbo Li & Huyue Chen & Zhiran Yi & Fuyi Fang & Xinyu Guo & Zhiyuan Wu & Qiuhua Gao & Lei Shao & Jian Xu & Guang Meng & Wenming Zhang, 2023. "Self-vectoring electromagnetic soft robots with high operational dimensionality," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Dezhao Lin & Fan Yang & Di Gong & Ruihong Li, 2023. "Bio-inspired magnetic-driven folded diaphragm for biomimetic robot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xinchen Ni & Haiwen Luan & Jin-Tae Kim & Sam I. Rogge & Yun Bai & Jean Won Kwak & Shangliangzi Liu & Da Som Yang & Shuo Li & Shupeng Li & Zhengwei Li & Yamin Zhang & Changsheng Wu & Xiaoyue Ni & Yongg, 2022. "Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Xingxing Ke & Haochen Yong & Fukang Xu & Han Ding & Zhigang Wu, 2024. "Stenus-inspired, swift, and agile untethered insect-scale soft propulsors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Qiji Ze & Shuai Wu & Jize Dai & Sophie Leanza & Gentaro Ikeda & Phillip C. Yang & Gianluca Iaccarino & Ruike Renee Zhao, 2022. "Spinning-enabled wireless amphibious origami millirobot," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Cornel Dillinger & Nitesh Nama & Daniel Ahmed, 2021. "Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Sukyoung Won & Hee Eun Lee & Young Shik Cho & Kijun Yang & Jeong Eun Park & Seung Jae Yang & Jeong Jae Wie, 2022. "Multimodal collective swimming of magnetically articulated modular nanocomposite robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Junghwan Byun & Aniket Pal & Jongkuk Ko & Metin Sitti, 2024. "Integrated mechanical computing for autonomous soft machines," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Jiefeng Sun & Elisha Lerner & Brandon Tighe & Clint Middlemist & Jianguo Zhao, 2023. "Embedded shape morphing for morphologically adaptive robots," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Shengzhu Yi & Liu Wang & Zhipeng Chen & Jian Wang & Xingyi Song & Pengfei Liu & Yuanxi Zhang & Qingqing Luo & Lelun Peng & Zhigang Wu & Chuan Fei Guo & Lelun Jiang, 2022. "High-throughput fabrication of soft magneto-origami machines," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Xin Yang & Zhihe Zhang & Mengwei Xu & Shuxun Li & Yuanhong Zhang & Xue-Feng Zhu & Xiaoping Ouyang & Andrea Alù, 2024. "Digital non-Foster-inspired electronics for broadband impedance matching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Yaohui Wang & Haitao Ye & Jian He & Qi Ge & Yi Xiong, 2024. "Electrothermally controlled origami fabricated by 4D printing of continuous fiber-reinforced composites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Xinyu Hu & Ting Tan & Benlong Wang & Zhimiao Yan, 2023. "A reprogrammable mechanical metamaterial with origami functional-group transformation and ring reconfiguration," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Lei Wu & Damiano Pasini, 2024. "Zero modes activation to reconcile floppiness, rigidity, and multistability into an all-in-one class of reprogrammable metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29645-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.