IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56059-7.html
   My bibliography  Save this article

Morphological and functional convergence of visual projection neurons from diverse neurogenic origins in Drosophila

Author

Listed:
  • Rana Naja El-Danaf

    (New York University Abu Dhabi)

  • Katarina Kapuralin

    (New York University Abu Dhabi
    University of Rijeka)

  • Raghuvanshi Rajesh

    (New York University Abu Dhabi
    New York University)

  • Félix Simon

    (New York University)

  • Nizar Drou

    (New York University Abu Dhabi)

  • Filipe Pinto-Teixeira

    (New York University Abu Dhabi
    CNRS)

  • Mehmet Neset Özel

    (New York University
    Stowers Institute for Medical Research)

  • Claude Desplan

    (New York University Abu Dhabi
    New York University)

Abstract

The Drosophila visual system is a powerful model to study the development of neural circuits. Lobula columnar neurons-LCNs are visual output neurons that encode visual features relevant to natural behavior. There are ~20 classes of LCNs forming non-overlapping synaptic optic glomeruli in the brain. To address their origin, we used single-cell mRNA sequencing to define the transcriptome of LCN subtypes and identified lines that are expressed throughout their development. We show that LCNs originate from stem cells in four distinct brain regions exhibiting different modes of neurogenesis, including the ventral and dorsal tips of the outer proliferation center, the ventral superficial inner proliferation center and the central brain. We show that this convergence of similar neurons illustrates the complexity of generating neuronal diversity, and likely reflects the evolutionary origin of each subtype that detects a specific visual feature and might influence behaviors specific to each species.

Suggested Citation

  • Rana Naja El-Danaf & Katarina Kapuralin & Raghuvanshi Rajesh & Félix Simon & Nizar Drou & Filipe Pinto-Teixeira & Mehmet Neset Özel & Claude Desplan, 2025. "Morphological and functional convergence of visual projection neurons from diverse neurogenic origins in Drosophila," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56059-7
    DOI: 10.1038/s41467-025-56059-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56059-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56059-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruce A. Rheaume & Amyeo Jereen & Mohan Bolisetty & Muhammad S. Sajid & Yue Yang & Kathleen Renna & Lili Sun & Paul Robson & Ephraim F. Trakhtenberg, 2018. "Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    2. Bruce A. Rheaume & Amyeo Jereen & Mohan Bolisetty & Muhammad S. Sajid & Yue Yang & Kathleen Renna & Lili Sun & Paul Robson & Ephraim F. Trakhtenberg, 2018. "Author Correction: Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    3. Holger Apitz & Iris Salecker, 2018. "Spatio-temporal relays control layer identity of direction-selective neuron subtypes in Drosophila," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    4. Joshua Hahn & Aboozar Monavarfeshani & Mu Qiao & Allison H. Kao & Yvonne Kölsch & Ayush Kumar & Vincent P. Kunze & Ashley M. Rasys & Rose Richardson & Joseph B. Wekselblatt & Herwig Baier & Robert J. , 2023. "Evolution of neuronal cell classes and types in the vertebrate retina," Nature, Nature, vol. 624(7991), pages 415-424, December.
    5. Tom Hindmarsh Sten & Rufei Li & Adriane Otopalik & Vanessa Ruta, 2021. "Sexual arousal gates visual processing during Drosophila courtship," Nature, Nature, vol. 595(7868), pages 549-553, July.
    6. Ted Erclik & Xin Li & Maximilien Courgeon & Claire Bertet & Zhenqing Chen & Ryan Baumert & June Ng & Clara Koo & Urfa Arain & Rudy Behnia & Alberto Del Valle Rodriguez & Lionel Senderowicz & Nicolas N, 2017. "Integration of temporal and spatial patterning generates neural diversity," Nature, Nature, vol. 541(7637), pages 365-370, January.
    7. Nathan C. Klapoetke & Aljoscha Nern & Martin Y. Peek & Edward M. Rogers & Patrick Breads & Gerald M. Rubin & Michael B. Reiser & Gwyneth M. Card, 2017. "Ultra-selective looming detection from radial motion opponency," Nature, Nature, vol. 551(7679), pages 237-241, November.
    8. Xin Li & Ted Erclik & Claire Bertet & Zhenqing Chen & Roumen Voutev & Srinidhi Venkatesh & Javier Morante & Arzu Celik & Claude Desplan, 2013. "Temporal patterning of Drosophila medulla neuroblasts controls neural fates," Nature, Nature, vol. 498(7455), pages 456-462, June.
    9. Hailun Zhu & Sihai Dave Zhao & Alokananda Ray & Yu Zhang & Xin Li, 2022. "A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junqiang Wang & Lin Zhang & Martina Cavallini & Ali Pahlevan & Junwei Sun & Ala Morshedian & Gordon L. Fain & Alapakkam P. Sampath & Yi-Rong Peng, 2024. "Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Hailun Zhu & Sihai Dave Zhao & Alokananda Ray & Yu Zhang & Xin Li, 2022. "A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Zachary T. Spencer & Victoria H. Ng & Hassina Benchabane & Ghalia Saad Siddiqui & Deepesh Duwadi & Ben Maines & Jamal M. Bryant & Anna Schwarzkopf & Kai Yuan & Sara N. Kassel & Anant Mishra & Ashley P, 2023. "The USP46 deubiquitylase complex increases Wingless/Wnt signaling strength by stabilizing Arrow/LRP6," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Yunpei Xu & Shaokai Wang & Qilong Feng & Jiazhi Xia & Yaohang Li & Hong-Dong Li & Jianxin Wang, 2024. "scCAD: Cluster decomposition-based anomaly detection for rare cell identification in single-cell expression data," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Evan S. Schaffer & Neeli Mishra & Matthew R. Whiteway & Wenze Li & Michelle B. Vancura & Jason Freedman & Kripa B. Patel & Venkatakaushik Voleti & Liam Paninski & Elizabeth M. C. Hillman & L. F. Abbot, 2023. "The spatial and temporal structure of neural activity across the fly brain," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Shinya Matsuda & Jonas V. Schaefer & Yusuke Mii & Yutaro Hori & Dimitri Bieli & Masanori Taira & Andreas Plückthun & Markus Affolter, 2021. "Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    7. Laura Hermans & Murat Kaynak & Jonas Braun & Victor Lobato Ríos & Chin-Lin Chen & Adam Friedberg & Semih Günel & Florian Aymanns & Mahmut Selman Sakar & Pavan Ramdya, 2022. "Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Yue Yang & Fangduo Zhu & Xumeng Zhang & Pei Chen & Yongzhou Wang & Jiaxue Zhu & Yanting Ding & Lingli Cheng & Chao Li & Hao Jiang & Zhongrui Wang & Peng Lin & Tuo Shi & Ming Wang & Qi Liu & Ningsheng , 2024. "Firing feature-driven neural circuits with scalable memristive neurons for robotic obstacle avoidance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Ruohan Wang & Yumin Zheng & Zijian Zhang & Kailu Song & Erxi Wu & Xiaopeng Zhu & Tao P. Wu & Jun Ding, 2024. "MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    11. Zoe Piran & Mor Nitzan, 2024. "SiFT: uncovering hidden biological processes by probabilistic filtering of single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Markku Kilpeläinen & Johan Westö & Jussi Tiihonen & Anton Laihi & Daisuke Takeshita & Fred Rieke & Petri Ala-Laurila, 2024. "Primate retina trades single-photon detection for high-fidelity contrast encoding," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Kit D. Longden & Edward M. Rogers & Aljoscha Nern & Heather Dionne & Michael B. Reiser, 2023. "Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Burak Gür & Luisa Ramirez & Jacqueline Cornean & Freya Thurn & Sebastian Molina-Obando & Giordano Ramos-Traslosheros & Marion Silies, 2024. "Neural pathways and computations that achieve stable contrast processing tuned to natural scenes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56059-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.